English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 55242/89549 (62%)
造访人次 : 10734281      在线人数 : 26
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/56812


    题名: A Particle Swarm Optimization Approach to Composing Serial Test Sheets for Multiple Assessment Criteria
    作者: Chen, Ying;Yin, Peng-yeng;Chang, Kuang-cheng;Hwang, Gwo-jen;Hwang, Gwo-haur
    贡献者: 淡江大學教育政策與領導研究所
    日期: 2006-07
    上传时间: 2011-09-11 20:00:12 (UTC+8)
    出版者: Palmerston North: International Forum of Educational Technology & Society
    摘要: To accurately analyze the problems of students in learning, the composed test sheets must meet multiple assessment criteria, such as the ratio of relevant concepts to be evaluated, the average discrimination degree, difficulty degree and estimated testing time. Furthermore, to precisely evaluate the improvement of student’s learning performance during a period of time, a series of relevant test sheets need to be composed. In this paper, a particle swarm optimization-based approach is proposed to improve the efficiency of composing near optimal serial test sheets from very large item banks to meet multiple assessment criteria. From the experimental results, we conclude that our novel approach is desirable in composing near optimal serial test sheets from large item banks and hence can support the need of evaluating student learning status.
    關聯: Journal of Educational Technology and Society 9(3), pp.3-15
    DOI: 
    显示于类别:[教育政策與領導研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    A Particle Swarm Optimization Approach to Composing Serial Test Sheets for Multiple Assessment Criteria.pdf731KbAdobe PDF0检视/开启
    index.html0KbHTML142检视/开启
    index.html0KbHTML24检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈