English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51510/86705 (59%)
Visitors : 8258368      Online Users : 109
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/55589


    Title: Excitonic effects in the optical properties of a SiC sheet and nanotubes
    Authors: Hsueh, H.C.;Guo, G.Y.;Louie, Steven G.
    Contributors: 淡江大學物理學系
    Date: 2011-08-19
    Issue Date: 2011-08-23 22:39:15 (UTC+8)
    Publisher: College Park: American Physical Society
    Abstract: The quasiparticle band structure and optical properties of single-walled zigzag and armchair SiC nanotubes (SiC-NTs) as well as a single SiC sheet are investigated by ab initio many-body calculations using the GW and the GW plus Bethe-Salpeter equation approaches, respectively. Significant GW quasiparticle corrections, of more than 1.0 eV, to the Kohn-Sham band gaps from the local density approximation (LDA) calculations are found. The GW self-energy corrections transform the SiC sheet from an indirect LDA band gap to a direct band gap material. Furthermore, the quasiparticle band gaps of SiC-NTs with different chiralities behave very differently as a function of tube diameter, and this can be attributed to the difference in the curvature-induced orbital rehybridization among the different chiral nanotubes. The calculated optical absorption spectra are dominated by discrete exciton peaks due to exciton states with a high binding energy, up to 2.0 eV, in the SiC sheet and SiC-NTs. The formation of strongly bound excitons is attributed to the enhanced electron-hole interaction in these low-dimensional systems. Remarkably, the excited electron amplitude of the exciton wave function is found to peak on Si atoms near the hole position (which is on the C site) in zigzag SiC-NTs, indicating a charge transfer from an anion (hole) to its neighboring cations by photoexcitation. In contrast, this pronounced peak structure disappears in the exciton wave function in armchair SiC-NTs. Furthermore, in armchair SiC-NTs, the bound exciton wave functions are more localized and also strongly cylindrically asymmetric. The high excitation energy, ∼3.0 eV, of the first bright exciton, with no dark exciton below it, suggests that small-radius armchair SiC-NTs could be useful for optical devices working in the UV regime. On the other hand, zigzag SiC-NTs have many dark excitons below the first bright exciton and hence may have potential applications in tunable optoelectric devices ranging from infrared to UV frequencies by external perturbations.
    Relation: Physical Review B 84(8), 085404(10pages)
    DOI: 10.1103/PhysRevB.84.085404
    Appears in Collections:[物理學系暨研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    1098-0121_84(8)p085404(10pages).pdf1034KbAdobe PDF145View/Open
    index.html期刊資訊0KbHTML176View/Open
    index.html0KbHTML66View/Open
    index.html館藏資訊0KbHTML34View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback