English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60868/93650 (65%)
造訪人次 : 1146999      線上人數 : 8
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/55467

    題名: Adaptable chromatic number of graph products
    作者: Pavol Hell;Pan, Zhishi;Wong, Tsai-Lien;Zhu, Xuding
    貢獻者: 淡江大學數學學系
    關鍵詞: Chromatic number;Adaptable chromatic number;Categorical product;Cartesian product;Categorical power;Cartesian power
    日期: 2009-11
    上傳時間: 2011-08-22 16:18:41 (UTC+8)
    出版者: Amsterdam: Elsevier BV * North-Holland
    摘要: A colouring of the vertices of a graph (or hypergraph) G is adapted to a given colouring of the edges of G if no edge has the same colour as both (or all) its vertices. The adaptable chromatic number of G is the smallest integer k such that each edge-colouring of G by colours 1,2,…,k admits an adapted vertex-colouring of G by the same colours 1,2,…,k. (The adaptable chromatic number is just one more than a previously investigated notion of chromatic capacity.) The adaptable chromatic number of a graph G is smaller than or equal to the ordinary chromatic number of G. While the ordinary chromatic number of all (categorical) powers Gk of G remains the same as that of G, the adaptable chromatic number of Gk may increase with k. We conjecture that for all sufficiently large k the adaptable chromatic number of Gk equals the chromatic number of G. When G is complete, we prove this conjecture with k≥4, and offer additional evidence suggesting it may hold with k≥2. We also discuss other products and propose several open problems.
    關聯: Discrete Mathematics 309(21), pp.6153-6159
    DOI: 10.1016/j.disc.2009.05.029
    顯示於類別:[數學學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0012-365X_309(21)p6153-6159.pdf525KbAdobe PDF118檢視/開啟
    Adaptable chromatic number of graph products.pdf525KbAdobe PDF1檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋