English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62568/95225 (66%)
造訪人次 : 2509027      線上人數 : 47
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/55038

    題名: Robust Face Tracking Control of a Mobile Robot Using Self-Tuning Kalman Filter and Echo State Network
    作者: Tsai, Chi-yi;Xavier Dutoit;Song, Kai-tai;Hendrik Van Brussel;Marnix Nutti
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Visual tracking control;visual state estimation;echo state network;face tracking;illumination variation
    日期: 2010-07
    上傳時間: 2011-08-09 20:29:51 (UTC+8)
    出版者: Hoboken: Wiley-Blackwell Publishing, Inc.
    摘要: This paper presents a novel design of face tracking algorithm and visual state estimation for a mobile robot face tracking interaction control system. The advantage of this design is that it can track a user's face under several external uncertainties and estimate the system state without the knowledge about target's 3D motion-model information. This feature is helpful for the development of a real-time visual tracking control system. In order to overcome the change in skin color due to light variation, a real-time face tracking algorithm is proposed based on an adaptive skin color search method. Moreover, in order to increase the robustness against colored observation noise, a new visual state estimator is designed by combining a Kalman filter with an echo state network-based self-tuning algorithm. The performance of this estimator design has been evaluated using computer simulation. Several experiments on a mobile robot validate the proposed control system.
    關聯: Asian Journal of Control 12(4), pp.488-509
    DOI: 10.1002/asjc.204
    顯示於類別:[電機工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    1934-6093_12(4)_p488-509.pdf1138KbAdobe PDF312檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋