淡江大學機構典藏:Item 987654321/54862
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60879/93651 (65%)
造访人次 : 1188128      在线人数 : 24
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/54862


    题名: 3D Skeleton Construction by Multi-View 2D Images and 3D Model Segmentation
    作者: Chang, Shih-ming;Tsai, Yi-sheng;Hsu, Hui-huang;Li, Kuan-ching
    贡献者: 淡江大學資訊工程學系
    关键词: 3D skeleton construction;3D object clustering;Speeded Up Robust Features;SURF
    日期: 2011-07-04
    上传时间: 2011-07-27 11:26:47 (UTC+8)
    出版者: IEEE Computer Society
    摘要: In this paper, we proposed method to develop 3D skeleton and 3D object clustering. In 3D skeleton, Firstly,we use multi-view human images and find the feature points between difference angles by Speeded Up Robust Features (SURF) method. Second, we use an effective coordinate transformation method to transform feature points in 3D space. Third, we use improvement K-means algorithm, add three direction, to find the human join
    points and to produce a simple 3D skeleton. In 3D object segmentation, we use Shape Diameter-Function (SDF)method and Gaussian Mixture Model (GMM) to segment regions in 3D model. In SDF method, we use SDF method to compute the SDF value by center of shape information and neighbor of current shape path information. In GMM method, we use GMM method to obtain the scope value of object clustering. Finally, we show results of our method in experiment results, and results show that our method is effective.
    關聯: Proceedings of 2011 Fourth International Conference on Ubi-media Computing, pp.168-173
    DOI: 10.1109/U-MEDIA.2011.48
    显示于类别:[資訊工程學系暨研究所] 會議論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    u-media11論文_資工系許輝煌.pdfU-Media 2011 發表之論文347KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈