English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7370250      線上人數 : 50
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/54862


    題名: 3D Skeleton Construction by Multi-View 2D Images and 3D Model Segmentation
    作者: Chang, Shih-ming;Tsai, Yi-sheng;Hsu, Hui-huang;Li, Kuan-ching
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: 3D skeleton construction;3D object clustering;Speeded Up Robust Features;SURF
    日期: 2011-07-04
    上傳時間: 2011-07-27 11:26:47 (UTC+8)
    出版者: IEEE Computer Society
    摘要: In this paper, we proposed method to develop 3D skeleton and 3D object clustering. In 3D skeleton, Firstly,we use multi-view human images and find the feature points between difference angles by Speeded Up Robust Features (SURF) method. Second, we use an effective coordinate transformation method to transform feature points in 3D space. Third, we use improvement K-means algorithm, add three direction, to find the human join
    points and to produce a simple 3D skeleton. In 3D object segmentation, we use Shape Diameter-Function (SDF)method and Gaussian Mixture Model (GMM) to segment regions in 3D model. In SDF method, we use SDF method to compute the SDF value by center of shape information and neighbor of current shape path information. In GMM method, we use GMM method to obtain the scope value of object clustering. Finally, we show results of our method in experiment results, and results show that our method is effective.
    關聯: Proceedings of 2011 Fourth International Conference on Ubi-media Computing, pp.168-173
    DOI: 10.1109/U-MEDIA.2011.48
    顯示於類別:[資訊工程學系暨研究所] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    u-media11論文_資工系許輝煌.pdfU-Media 2011 發表之論文347KbAdobe PDF1檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋