淡江大學機構典藏:Item 987654321/54705
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62805/95882 (66%)
Visitors : 3946630      Online Users : 566
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/54705


    Title: 應用微技術之燃料電池燃料處理系統的模擬分析與最佳化(I)
    Other Titles: Simulation and Optimization of Fuel Processing Systems Using Microtechnology for Fuel Cells(I)
    Authors: 張煖;陳逸航
    Contributors: 淡江大學化學工程與材料工程學系
    Keywords: 燃料電池;微燃料處理系統;計算流體力學;甲醇;蒸汽重組;氫氣;Fuel cell;Micro fuel processor;Computational fluid dynamics;Methanol;Steam reforming;Hydrogen
    Date: 2010
    Issue Date: 2011-07-06 22:24:15 (UTC+8)
    Abstract: 質子交換膜燃料電池作為可攜式電源,其能源密度可達鋰電池之7~8 倍,在成本逐 漸降低之下,已成為取代傳統電池之最佳選擇。然而燃料供應是必須克服的技術問題, 由於直接供應氫氣之困難度與危險性,使用直接甲醇燃料電池與使用液態燃料經臨場 (in-situ)重組產氫是主要的兩種作法。其中後者,利用已成熟發展之IC 製造技術,可藉 由製造各種微尺寸裝置,如微反應器、微熱交換器、微混合器等,將之整合為一個小巧 的臨場(in-situ)燃料處理系統。 由於甲醇蒸汽重組微燃料處理系統作為燃料電池之可攜式電源具有極高之可行 性,系統之能源利用效率有賴於個別裝置設計,以及由個別裝置所組合而成的整體流程 設計。目前已有許多研究機構提出不同的設計與實驗結果,然而,文獻上尚未見對此系 統之全面性探討。本計畫之目的在於針對甲醇蒸汽重組微燃料處理系統自個別裝置,以 至整體系統流程,利用模擬工具進行設計與操作之最佳化研究。 本計畫之第一階段將利用計算流體力學軟體探討微技術燃料處理系統所使用各種 主要微裝置,包括主要之微熱交換器與微反應器,以掌握各微裝置不同設計之性能特 性。第二階段則擬運用第一階段之成果,使用程序模擬軟體探討不同的流程設計的系統 整合性能,包括動態特性與控制/操作策略。
    The proton exchange membrane (PEM) fuel cell is particularly attractive and promising for portable applications because of its high energy density. However, the fuel supply is one the key technical issue. Using liquid hydrocarbon for in-situ hydrogen generation is a highly feasible solution, particularly by incorporating the micro-devices developed from microtechnology. Methanol is an attractive fuel, offering high hydrogen-carbon ratio, high energy density, ready availability, and low boiling point, sulfur free and reformable at low temperature. The energy efficiency of the fuel processor system depends on the performance of the individual devices as well as the integrated system. The project aims to investigate the design and performance of the major microdevices, including methanol steam reformer, carbon monoxide preferential oxidation and catalytic combustor, as well as the integration of the overall flowsheet. The study will be conducted via simulation approach using computational fluid dynamics (CFD) software, FLUENT, and flowsheet simulation software, Aspen Custom Modeler. CFD simulation for the individual devices will provides the transport coefficients, including friction factor, heat transfer coefficient and mass transfer coefficient, for the mathematical models of flowsheet simulation. The simulation will be applied for the (1) optimization analysis of the device design and operating conditions, (2) flowsheet configuration design considering thermal integration and water management, and (3) flowsheet dynamics, control strategy and operation strategy study.
    Appears in Collections:[Graduate Institute & Department of Chemical and Materials Engineering] Research Paper

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback