English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62822/95882 (66%)
造访人次 : 4017608      在线人数 : 643
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/54521


    题名: 「磁浮車-導軌」互制系統之非線性振動與控制
    其它题名: Nonlinear Interaction Dynamics and Control of MagLev Vehicle/Guideway Coupling System
    作者: 姚忠達
    贡献者: 淡江大學建築學系
    关键词: 磁浮車;導軌;PID控制;振動;Guideway;Maglev vehicle;PID control;Vibration
    日期: 2010
    上传时间: 2011-07-06 11:43:34 (UTC+8)
    摘要: 近年全球暖化現象造成地球氣候變遷反常,也嚴重危害到地球上生物存活環境,「節能減 碳」不再是口號,也成為各已開發國家積極努力的目標。磁浮運輸因具有「低耗能、低噪音、 低環境衝擊」的環保特性,不少國家均將磁浮運輸視為未來下一代導軌型運輸的重要交通設 施。目前,世界上對磁浮運輸的研究,雖以德、日為首,中國與韓國近年也投入大量人力與 物力,進行磁浮運輸相關課題的研究。例如,2002 年,上海市-浦東機場之間的高速磁浮線 營運,標示著磁浮運輸紀元的到來;2005 年,日本愛知世博會的低速區域磁浮運輸(Tubo Kyuryo Line),則代表著具有高科技象徵的磁浮運輸科技,已進入我們生活的實用階段;2008 年,韓國也開始積極地投入磁浮運輸的研究,目前已在大田(Daejeon)完成首條磁浮運輸 (UTM-02)的示範線。目前有關磁浮車之營運系統,主要有兩大系統:(1)德國Transrapid 磁浮 列車系統,主要是以電磁懸浮式(electro-magnetic suspension system,簡稱EMS) 互吸型的磁 浮機制為主,其磁浮間距(levitation gap)為0.5~2 公分之間,車體由分佈型的磁浮力所支撐; (2)日本的高速磁浮列車MLX 系統,主要是以電動懸浮式(electro-dynamic suspension system, 簡稱EDS)互斥型的磁浮機制為主,其磁浮間距為10~15 公分,車體由集中型的磁浮力所支撐。 針對上述之磁浮運輸的研究,計畫申請人,過去數年間雖一直專研輪軌式的高速鐵路車/ 橋互制振動(vehicle/bridge interaction dynamics)的研究。惟面對此一未來運輸趨勢,擬就磁浮 運輸中的車/導軌振動與控制主題,提出三年的先導性研究計劃。整個計劃研究主題歸納如下: 1. 磁浮車/導軌互制的動力控制理論(基本磁浮理論+車體振動控制) 2. 導軌支承沉陷下,EMS 磁浮車的振動反應與控制(評估磁浮間距對支承沉陷之敏銳度) 3. 地震下,EDS 磁浮車通過懸吊導軌之反應控制(LQR+PID 控制器抑制磁浮車反應)
    Successful demonstration line of commercial maglev (magnetically levitated) transport in Shanghai (2002) marked a starting milestone of toward more efficient and environmental-friendly guided ground transportation. In 2005, a low speed maglev route (Tubo Kyuryo Line) was employed to serve the local transport of EXPO 2005 Aichi, Japan. In 2008, an urban transit maglev system (UTM-02) for public use started to operate in Daejeon, Korea. Because of contact-less nature for maglev vehicles running on guideway, maglev transport system possesses several environmental-friendly advantages, such as low noise, less energy consumption, and waste gas discharge. With the recent progress of maglev technology in transport, two kinds of maglev technologies have been developed in practical applications: (1) the electromagnetic suspension (EMS) with attractive mode, in which the EMS system can lift a vehicle up to 8~20mm at any speed by the use of distributed magnets beneath a guide-rail; (2) the electro-dynamic suspension (EDS) with repulsive mode, in which the EDS system takes off a running vehicle above its guide-rail with a large guideway clearance of about 10~15cm when the moving speed exceeds a liftoff speed (100~120km/h). To address the dynamic problem of maglev vehicle/guideway interactions, this research project is proposed to extend a period of three years. In the first year, the main efforts will be focused on the development of fundamental theory and formulation of maglev-vehicle/guideway interaction dynamics and control mechanisms of levitation forces, in which interaction responses of maglev vehicle/guideways system will be carried out using an incremental-iterative procedure. Based on the theoretical framework and computational methodology developed above, the research work in the second year is to evaluate the settlement effect of guideway supports on dynamic response of an EMS maglev vehicle traveling over a series of guideway girders. With a hybrid PID+LQR controller, the interaction response of an EDS maglev train running on a suspended guideway shaken by horizontal earthquakes will be studied in the third year of this three-year research project.
    显示于类别:[建築學系暨研究所] 研究報告

    文件中的档案:

    没有与此文件相关的档案.

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈