淡江大學機構典藏:Item 987654321/54345
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64180/96952 (66%)
造訪人次 : 11307116      線上人數 : 8334
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/54345


    題名: 具缺失共變量現狀數據之柯斯回歸
    其他題名: Cox Regression for Current Status Data with Missing Covariates
    作者: 溫啟仲
    貢獻者: 淡江大學數學學系
    日期: 2010
    上傳時間: 2011-07-06 00:29:32 (UTC+8)
    摘要: 具缺失共變量之右設限數資料在正比風險模型下的統計推論受到極大關注,但對具缺失共變量之區間設限資料或現狀數據卻未曾研究。研究動機部分來自2005年國民健康調查2670位65~102歲受訪者的骨折資料,其中骨折發生時間為區間設限且共變量:骨質疏鬆並非人人有紀錄。在此計劃中,我們將研究具缺失共變量之現狀數據在正比風險模型下的無母數最大概然估計。此外,我們將建立一新演算法計算估計量。藉由模擬試驗,我們將比較所提方法、全體觀測值分析和完整觀測值分析的數值表現;也將分析骨折資料。
    Statistical inference based on the right-censored data for proportional hazard (PH) model with missing covariates has received considerable attention, but interval-censored or current status data with missing covariates are yet to be investigated. Our study is partly motivated by analysis of clinical fractures data from a survey of 2670 Taiwan residents age 65–102 years within 2005 National Health Interview Survey Original Database in Taiwan, where the occurrence of fractures is interval-censored and covariate osteoporosis is not reported for all residents. In this plan, we wish to present a nonparametric maximum likelihood method for analyzing current status data with missing covariates under the Cox proportional hazards model. In addition, we aim to develop a new algorithm to compute the estimates. The comparison of the performance of our method with full-cohort analysis and complete-case analysis will be made via simulation. The clinical fractures data will also be analyzed.
    顯示於類別:[應用數學與數據科學學系] 研究報告

    文件中的檔案:

    沒有與此文件相關的檔案.

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋