English  |  正體中文  |  简体中文  |  Items with full text/Total items : 63184/95884 (66%)
Visitors : 4526492      Online Users : 347
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/54287

    Title: 不完全長期追蹤順序資料之多重插補法
    Other Titles: Multiple Imputation for Incomplete Longitudinal Ordinal Data
    Authors: 陳怡如
    Contributors: 淡江大學統計學系
    Keywords: 不完全資料;長期追蹤順序資料;多重插補法;隨機數生成;Incomplete data;Longitudinal ordinal data;Multiple imputation;Random number generation
    Date: 2010
    Issue Date: 2011-07-05 23:34:20 (UTC+8)
    Abstract: 不完全資料常發生於長期追蹤研究,在產生遺失值的情況下,資料分析過程將易 趨於繁複,因此如何找出適當的分析方法成為重要的議題之一。Little and Rubin (2002) 指出插補法為解決不完全資料問題的其中一種方法,大多數有關多重插補法之文獻則 著重於討論長期追蹤連續型反應變數以及長期追蹤二元資料。Demirtas and Hedeker (2008)提出針對長期追蹤順序資料之擬插補(quasi-imputation)策略,先將順序型類別分 解成二元型態,經由二元反應變數之相關結構轉換成多變量常態,再反轉換成二元型 態,進而還原到順序型態。在此計劃中,將提出另一種較簡易之插補策略,主要是依 據隨機數生成,並藉由模擬研究來討論比較Demirtas-Hedeker 方法與所提出方法之表 現。此外,利用Lang et al. (1999)探討分析青少年使用大麻之研究資料來闡述所提出方 法之應用。
    Incomplete data are common problems in longitudinal studies. An appropriate analytical procedure in the presence of incomplete observations is a crucial issue due to the additional complexity that arises through incomplete data. Little and Rubin (2002) pointed out that imputation-based procedure is one of the methods for dealing with incomplete data. Most of the literature related with multiple imputation focus on the strategies for longitudinal continuous responses and for correlated binary outcomes. A quasi-imputation strategy for incomplete longitudinal ordinal data was proposed by Demirtas and Hedeker (2008), which collapses ordinal levels to binary ones and converts correlated binary outcomes to multivariate normal outcomes so that re-conversion to the binary and then ordinal setting. In this project, alternative imputation strategy based on random number generation for incomplete longitudinal ordinal data is proposed, and the performance between Demirtas-Hedeker method and the proposed procedure is compared by simulation studies. A study of marijuana use analyzed by Lang et al. (1999) will be used to demonstrate the application of the proposed method.
    Appears in Collections:[Graduate Institute & Department of Statistics] Research Paper

    Files in This Item:

    There are no files associated with this item.

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback