English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 59600/92934 (64%)
造访人次 : 822320      在线人数 : 185
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/54222

    题名: Mining a Small Medical Data Set by Integrating the Decision Tree and t-test
    作者: Chang, Ming-Yang;Shih, Chien-Chou;Chiang, Ding-An;Chen, Chun-Chi
    贡献者: 淡江大學資訊傳播學系;淡江大學資訊工程學系
    关键词: Data mining;Decision tree;t-test;p-value;Ovarian endometriomas
    日期: 2011-12
    上传时间: 2011-07-03 00:45:20 (UTC+8)
    出版者: Oulu: Academy Publisher
    摘要: Although several researchers have used statistical methods to prove that aspiration followed by the injection of 95% ethanol left in situ (retention) is an effective treatment for ovarian endometriomas, very few discuss the different conditions that could generate different recovery rates for the patients. Therefore, this study adopts the statistical method and decision tree techniques together to analyze the postoperative status of ovarian endometriosis patients under different conditions. Since our collected data set is small, containing only 212 records, we use all of these data as the training data. Therefore, instead of using a resultant tree to generate rules directly, we use the value of each node as a cut point to generate all possible rules from the tree first. Then, using t-test, we verify the rules to discover some useful description rules after all possible rules from the tree have been generated. Experimental results show that our approach can find some new interesting knowledge about recurrent ovarian endometriomas under different conditions.
    關聯: Journal of Software 6(12), pp.2515-2520
    DOI: 10.4304/jsw.6.12.2515-2520
    显示于类别:[資訊傳播學系暨研究所] 期刊論文
    [資訊工程學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    Mining a Small Medical Data Set by Integrating the Decision Tree and t-test.pdf27468KbAdobe PDF169检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈