English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64198/96992 (66%)
Visitors : 7992850      Online Users : 2592
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/54179


    Title: 臉部五官定位系統研討與實做
    Other Titles: A study and implementation in facial organ localization system
    Authors: 羅永欽;Lo, Yung-Chin
    Contributors: 淡江大學資訊工程學系碩士在職專班
    汪柏;Bal-Wang
    Keywords: 主動式形狀模型;人臉特徵定位;ASM;Active Shape Models;Facial Organ Localization;ASM
    Date: 2011
    Issue Date: 2011-06-16 22:07:16 (UTC+8)
    Abstract: 本論文主要是在探討如何快速擷取及定位人臉特徵的方法,並且開發出可以實現臉部五官定位與應用的系統。
    人臉影像因人而異,通常含有很大的變異性,然而人臉五官卻又有大致相同的形狀;在近代發表的邊緣輪廓偵測的方法中,主動式形狀模型(Active Shape Models,ASM)在偵測已知形狀的輪廓上是一個有效的方法;因此,我們採用此方法做為理論基礎來開發實做系統。
    我們系統主要分成兩個部份:(1)模型訓練,本論文的方法能夠幫助使用者更有效率的建立訓練模型;(2)定位應用,本論文的方法可以避免傳統主動式形狀模型因為初始搜尋位置不佳而造成無法有效偵測特徵點位置甚至找不到特徵點位置的問題,並且可以對搜尋結果異常的特徵點做屬性修正。
    In this paper, we propose a system to locate facial organ in a given image. This system based on techniques of Activity Shapes Models method. Our facial organ localization system mainly contains two parts:(1) models training and (2)localization application. In the first part, our system can help users more efficiently create training models. In the second part, our system can avoid the traditional ASM may fail to locate an acceptable result if given a poor starting point and it will do attribute correction to abnormal feature points.
    Appears in Collections:[資訊工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML259View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback