English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 57615/91160 (63%)
造訪人次 : 13559796      線上人數 : 136
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/54168

    題名: 柔性鋪面道路試驗資料之軸重當量因子初步分析
    其他題名: Preliminary analysis of load equivalency factors of the aasho road test flexible pavement data
    作者: 李家瑋;Lee, Chia-Wei
    貢獻者: 淡江大學土木工程學系碩士班
    李英豪;Lee, Ying-Haur
    關鍵詞: 柔性鋪面;道路試驗;線性混合效果模式;非線性迴歸模式;投影追逐迴歸法;小區域迴歸法;軸重當量因子;flexible pavement;Road Test;Linear Mixed-Effects models;nonlinear regression;projection pursuit regression;local regression;load equivalency factor
    日期: 2011
    上傳時間: 2011-06-16 22:06:02 (UTC+8)
    摘要: 鋪面績效資料即是一種極為常見的多層次資料。當利用傳統迴歸方法來分析此種資料時,常會發現違反了對隨機誤差所做的常態分配與固定變異數的假設。因這類型的資料具有層級性,現在通常是採用線性混合效果(LME)模式來分析。線性混合效果模式在資料探索分析、統計模式構建、模式評估與驗證等方面通常會較傳統迴歸分析來得複雜。因此黃思齊(2010)利用美國AASHO道路試驗的柔性鋪面原始資料,成功使用於線性混合效果模式來建立之現況服務能力指標值(PSI)預測式。
    本研究將持續探討及驗證線性效果模式之適用性,並實際應用於建立軸重當量因子(EALF或LEFs) ,以提高線性混合效果模式之可信度。此外,本研究將擬選用之不同迴歸方法來進行預測與分析,其中包括:投影追逐迴歸法(PPR)、小區域迴歸法(LOESS)、非線性迴歸(NLS),並嘗試分開建立單、雙軸之柔性鋪面設計公式,以解決原AASHO柔性鋪面設計公式中不合理之情形。其本研究所建立之柔性鋪面設計公式,在預測Log(W)與W時所得之預測結果,皆較原AASHO柔性鋪面設計公式要來的準確,且建立之軸重當量因子亦有符合工程常理。
    Pavement performance data is a very common example of multilevel data. While analyzing this type of data using conventional regression techniques, the normality assumptions with random errors and constant variance were often violated. Because of its hierarchical data structure, multilevel data are often analyzed using Linear Mixed-Effects (LME) models. The exploratory analysis, statistical modeling, and the examination of model-fit of LME models are more complicated than those of standard multiple regressions. A preliminary LME model for PSI prediction was developed by Huang (2010) using the original AASHO road test flexible pavement data.
    This is a continuous study to explore and validate the applicability of the aforementioned preliminary LME model particularly on the potential use of equivalent axle load factors (EALF) or load equivalency factors (LEF). Necessary steps have been made to enhance the existing LME model. In addition, projection pursuit regression, local regression and nonlinear regression techniques were also adopted in an attempt to develop modified flexible pavement design equations for single- and tandem- axle loads separately.
    Various load equivalency factors have been derived using different predictive models and compared to the existing LEFs of the AASHTO guides. Even though reasonable results have been obtained, the newly derived LEFs representing quite a departure from the well-known fourth-power rule should be cautioned and further investigated.
    顯示於類別:[土木工程學系暨研究所] 學位論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋