English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62572/95237 (66%)
造訪人次 : 2537690      線上人數 : 344
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/53820

    題名: Machine performance monitoring and fault classification using an exponentially weighted moving average scheme
    作者: 林長青;Spoerre, Julie K.;Wang, Hsu-pin
    貢獻者: 淡江大學經營決策學系
    日期: 1993-12-30
    上傳時間: 2011-05-20 15:34:09 (UTC+8)
    摘要: The present invention provides an accurate machine monitoring technique based on vibration analysis. An AR parametric model is generated to characterize a normal machine condition. Subsequently, data is collected from a machine during operation. This data is fit to the AR parametric model, and an Exponentially Weighted Moving Average (EWMA) statistic is derived therefrom. The EWMA statistic is able to identify whether the machine is in a normal state ("in control") or in an abnormal state ("out of control"). Additionally, an EWMA control chart is generated that distinguishes between normal and abnormal conditions, and between different abnormal conditions. As a result, once the EWMA statistic is generated, it is compared to the EWMA chart for determination of the specific fault that is ailing the machine.
    顯示於類別:[管理科學學系暨研究所] 專利





    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋