English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 60860/93526 (65%)
造訪人次 : 1508593      線上人數 : 15
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/53762

    題名: Moving Object Detection and Tracking Using GMM
    作者: Lin, Hwei-jen;Yeh, Jih-pin;Wang, Chun-wen;Liang, Feng-ming
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Detection;tracking;Gaussian mixture model;Particle filters;Sequential K-mean algorithm;Expectation maximization
    日期: 2009-08
    上傳時間: 2011-05-20 09:59:09 (UTC+8)
    出版者: Allahabad: Pushpa Publishing House
    摘要: For object detection and tracking, we use a modified version of Gaussian Mixture Models (GMMs) to construct the background, and then subtract it from the image to obtain the foreground where the moving objects are located. We then perform some operations, including shadow removal, edge detection, and connected component analysis to localize each moving object in the foreground. As soon as an object is detected, it is tracked in the subsequent frames using a Particle Filter (PF). The PF is effective, but the dimension of its state space is high since the tracked objects tend shift. To reduce this problem, we modify the particle filter by tracking over the foreground portion instead of the entire image. Using modified versions of both the GMM and PF, our system proves to have a high accuracy rate for detection/tracking and satisfactory time efficiency.
    關聯: Far East Journal of Experimental and Theoretical Artificial Intelligence 3(2), pp.69-80
    顯示於類別:[資訊工程學系暨研究所] 期刊論文


    檔案 描述 大小格式瀏覽次數
    0974-3261_3(2)p69-80.pdf7644KbAdobe PDF2檢視/開啟



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋