English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 60860/93526 (65%)
造访人次 : 1508615      在线人数 : 11
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/53759

    题名: Optimal reduction of solutions for support vector machines
    作者: Lin, Hwei-Jen;Yeh, Jih-Pin
    贡献者: 淡江大學資訊工程學系
    关键词: Support vector machine;Vector correlation;Genetic algorithms;Optimal solution;Discriminant function;Pattern recognition
    日期: 2009-08
    上传时间: 2011-05-20 09:58:43 (UTC+8)
    出版者: Philadelphia: Elsevier Inc.
    摘要: Being a universal learning machine, a support vector machine (SVM) suffers from expensive computational cost in the test phase due to the large number of support vectors, and greatly impacts its practical use. To address this problem, we proposed an adaptive genetic algorithm to optimally reduce the solutions for an SVM by selecting vectors from the trained support vector solutions, such that the selected vectors best approximate the original discriminant function. Our method can be applied to SVMs using any general kernel. The size of the reduced set can be used adaptively based on the requirement of the tasks. As such the generalization/complexity trade-off can be controlled directly. The lower bound of the number of selected vectors required to recover the original discriminant function can also be determined.
    關聯: Applied Mathematics and Computation 214(2), pp.329-335
    DOI: 10.1016/j.amc.2009.04.010
    显示于类别:[資訊工程學系暨研究所] 期刊論文


    档案 大小格式浏览次数
    0096-3003_214(23)_p329-335.pdf169KbAdobe PDF212检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈