淡江大學機構典藏:Item 987654321/53707
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58286/91808 (63%)
造访人次 : 13807241      在线人数 : 77
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/53707


    题名: Design and Control of Heat-Integrated Reactors
    作者: Chen, Yih-hang;Yu, Cheng-ching
    贡献者: 淡江大學化學工程與材料工程學系
    日期: 2003-05-01
    上传时间: 2011-05-20 09:56:15 (UTC+8)
    出版者: American Chemical Society
    摘要: The objective of this work is to quantify the controllability of a complex heat-integrated reactor. Similarly to the concept of ultimate gain in the control literature, the ultimate effectiveness is defined for a complex feed-effluent heat exchanger (FEHE) scheme. This parameter indicates the amount of heat that can be recovered (via FEHE) before the overall open-loop system becomes unstable. First, a systematic approach is proposed to model the complex heat-integrated reactors. A simple measure, the overall effectiveness, can be derived directly from the flowsheet. Given the reactor model, the controllability of a particular flowsheet can be evaluated on the basis of the stability margin of design. An interpretation based on the heat-generation and heat-removal curves is also given. With the controllability measure, implications for design are also explored. Because the loss of controllability comes from the positive feedback loop, several design parameters are studied, and design heuristics are proposed to improve the controllability of heat-integration schemes. Two examples, a simple two-FEHE example and an HDA example, are used to assess the controllability of different designs. The results show that, contrary to one’s intuition, some of the complex heat-integrated reactor design alternatives (e.g., alternatives 6 and 7 of the HDA example) are indeed more controllable than the simpler heat-integration schemes (e.g., alternative 1). The increased number of FEHEs allows for a greater number of candidate manipulated inputs and thus provides opportunities for multivariable control. Contrary to one’s intuition, the multivariable controlled FEHE/reactor system gives a steeper slope and a lower peak for the closed-loop load-transfer function. This results in an improved disturbance rejection capability.
    關聯: Industrial & Engineering Chemistry Research 42(12), pp.2791-2808
    DOI: 10.1021/ie020324r
    显示于类别:[化學工程與材料工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML205检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈