English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56816/90588 (63%)
造訪人次 : 12106368      線上人數 : 67
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/53685

    題名: Mass-Transfer Efficiency of Membrane Extraction in Laminar Flow between Parallel-Plate Channels: Theoretical and Experimental Studies
    作者: Guo, Jia-jan;Ho, Chii-dong;Yeh, Ho-ming
    貢獻者: 淡江大學化學工程與材料工程學系
    日期: 2007-10-01
    上傳時間: 2011-05-20 09:55:19 (UTC+8)
    出版者: American Chemical Society
    摘要: The mass-transfer efficiency of the parallel-plate membrane extractor module with concurrent and countercurrent flows was investigated theoretically and experimentally in this study. The analytical solution is obtained using an eigen-function expansion in terms of the power series using an orthogonal expansion technique. The theoretical predictions were represented graphically with the mass-transfer Graetz number (volumetric flow rate), flow pattern, and subchannel thickness ratio (permeable-barrier locations) as parameters, compared with those obtained by numerical approximation and experimental runs. The extractive rate, the extractive efficiency, and the mass-transfer efficiency can be achieved higher for the countercurrent-flow device than those of the concurrent-flow device by setting the barrier location moving away from the centerline. The accuracy of the experimental measurements as compared to both analytical model and approximation model were calculated by 2.11 × 10-2 ≤ E1 ≤ 5.15 × 10-2 and 4.63 × 10-2 ≤ E2 ≤ 8.12 × 10-2, respectively. These operating and design parameters influences on the mass-transfer efficiency enhancement are also discussed.
    關聯: Industrial & Engineering Chemistry Research 46(23), pp.7788-7801
    DOI: 10.1021/ie0611610
    顯示於類別:[化學工程與材料工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋