淡江大學機構典藏:Item 987654321/53536
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64191/96979 (66%)
造訪人次 : 8347024      線上人數 : 8251
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/53536


    題名: A Profile Likelihood Theory for the Correlated Gamma-Frailty Model with Current Status Family Data
    作者: Chang, I-shou;Wen, Chi-chung;Wu, Yuh-jenn
    貢獻者: 淡江大學數學學系
    關鍵詞: Current status family data;least favorable submodel;likeli-hood ratio statistic;nonparametric maximum likelihood estimate;profile likelihood
    日期: 2007-07
    上傳時間: 2011-05-20 09:42:54 (UTC+8)
    出版者: Statistica Sinica
    摘要: A profile likelihood inference is made for the regression coefficient and frailty parameters in the correlated gamma-frailty model for current status family data. With the introduction of an identifiability assumption, the identifiability of the parameters and the existence of the nonparametric maximum likelihood estimate (NPMLE) are established, the consistency and convergence rate of the NPMLE are obtained, the invertibility of the efficient Fisher information matrix is proved, and a quadratic expansion of the profile likelihood is established. From these, we show that the NPMLE of the parameters of interest is asymptotically normal and efficient, its covariance matrix can be estimated consistently by means of the profile likelihood, and the likelihood ratio test is asymptotically chi-squared. A simulation study is carried out to illustrate the numerical performance of the likelihood ratio test.
    關聯: Statistica Sinica 17(3), pp.1023-1046
    DOI: 
    顯示於類別:[應用數學與數據科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    1017-0405_17(3)_p1023-1046.pdf300KbAdobe PDF400檢視/開啟
    index.html0KbHTML214檢視/開啟
    index.html0KbHTML163檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋