English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 61986/94645 (65%)
造訪人次 : 1639013      線上人數 : 15
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/53372

    題名: An Autopilot Design for the Longitudinal Dynamics of a Low-Speed Experimental UAV Using Two-Time-Scale Cascade Decomposition
    作者: Shiau, Jaw-Kuen;Ma, Der-Ming
    貢獻者: 淡江大學航空太空工程學系
    日期: 2009-08
    上傳時間: 2013-03-20 16:26:55 (UTC+8)
    出版者: Montreal: Canadian Society for Mechanical Engineering
    摘要: This paper discusses a cascade decomposition method for two-time-scale systems. We decompose the two-time-scale system into slow and fast subsystems connected in cascade form. With the proposed decomposition method, fast and slow low-order subsystems can be easily extracted from the two-time-scale full order system. The longitudinal dynamics of a low speed experimental UAV is used to illustrate the proposed method. An altitude hold control structure is constructed to allow sequential designs based on the lower order fast and slow models using classical designs. The structure contains two control loops. The inner loop is for altitude rate regulation. In this control loop, we use combination of altitude rate and pitch angle as the feedback signals. A fast controller is designed to satisfy the high frequency requirements using the fast model. Following the results of the fast design, three control gains are designed to satisfy the low frequency requirements using the slow models. The design results of the inner loop are used to design the outer altitude control loop. Frequency domain analysis and computer simulations confirm the success of the proposed decomposition method and verify the effectiveness of the control law using the proposed control structure.
    關聯: Transactions of the Canadian Society for Mechanical Engineering 33(3), pp.501-521
    顯示於類別:[航空太空工程學系暨研究所] 期刊論文


    檔案 大小格式瀏覽次數



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋