淡江大學機構典藏:Item 987654321/52804
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8092551      在线人数 : 12032
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52804


    题名: Unbiased MMSE vs. Biased MMSE Equalizers
    作者: 嚴雨田;Yen, RainfieldY.
    贡献者: 淡江大學電機工程學系
    关键词: Minimum Mean Square Error(MMSE);Channel Equalization;Unbiased Estimate;Symbol Error Probability;Decision Feedback Equalizers(DFEs)
    日期: 2009-03-01
    上传时间: 2010-12-01 10:33:23 (UTC+8)
    出版者: 臺北縣:淡江大學
    摘要: We systematically analyze the biased and unbiased minimum mean square error (MMSE) equalizers of finite as well as infinite length, with and without decision feedback sections. New closed-form expressions of optimum equalizer weights, the MMSE, and symbol error probabilities (SEP), solely in terms of channel response parameters and noise power, are derived for the above receivers. These new expressions have not appeared in the literature and should be included for completeness. We also prove analytically that the biased and unbiased MMSE equalizers have the same optimum weights and that an infinitely long unbiased MMSE equalizer approaches the optimum minimum error probability equalizer. Performance curves are presented and compared for all the receivers discussed. Moreover, for all the infinite length equalizers presented, alternative error probability expressions are provided to best suit computer simulations.
    關聯: Tamkang Journal of Science and Engineering=淡江理工學刊 12(1),頁45-56
    DOI: 10.6180/jase.2009.12.1.05
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1560-6686_12-1-5.pdf4131KbAdobe PDF615检视/开启
    index.html0KbHTML51检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈