淡江大學機構典藏:Item 987654321/52790
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8365735      在线人数 : 7803
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52790


    题名: An Immunity Based Hybrid Evolutionary Algorithm for Engineering Optimization
    作者: 史建中;Shih, Chien-jong;Kuan, T. L.
    贡献者: 淡江大學機械與機電工程學系
    关键词: Biological Computation;Artificial Immune System;Evolutionary Algorithm;Engineering Optimization;Structural Design
    日期: 2006-03
    上传时间: 2010-12-01 10:31:18 (UTC+8)
    出版者: 臺北縣:淡江大學
    摘要: The immune system has been recognized possesses pattern recognition ability in which the lymphocytes can learn to distinguish selves and match a variety of pathogens. Consequently, sufficient antibodies are generated to eliminate the growth of the foreign antigens. This paper describes the inspiration from the immune system and how to apply immune system principles to develop the global unconstrained and constrained optimization algorithms. The features of the proposed approach contain: the affinity maturation in immune system has been employed as the primary principle, the real number code has been used as genes representation in this development; the modified expression strategy for constraints handling and a diverse multiplication generated in genetic algorithm. Numerical structural engineering optimization problems demonstrate that the proposed immunity based evolutionary approach has the solution consistency; avoiding premature and can achieve a robust final design.
    關聯: 淡江理工學刊=Tamkang journal of science and engineering 9(1),頁25-36
    显示于类别:[機械與機電工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1560-6686_9-1-3.pdf232KbAdobe PDF468检视/开启
    index.html0KbHTML81检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈