English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 57042/90725 (63%)
造访人次 : 12459281      在线人数 : 180
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/52774

    题名: On the Approach of Automatic Adjustments for Gaussian-Mixture Clustering
    作者: 郭經華;Kuo, Chin-hwa;Chou, Tzu-chuan;Chen, Meng-chang
    贡献者: 淡江大學資訊工程學系
    关键词: Parameter estimation of gaussian mixture;EM algorithm;Clustering algorithm;Local optima
    日期: 2006-06-01
    上传时间: 2010-12-01 10:29:56 (UTC+8)
    出版者: 臺北縣:淡江大學
    摘要: In this paper, we discuss the dual-problem of adjusting the mixture number and avoiding local optima in the estimation of a Gaussian mixture. This estimation is widely used in unsupervised-classification applications; however, its results are serially sensitive to the initial setting, which is difficult to optimize. It is also difficult to automatically designate the mixture number in advance. In much of the literature, these two issues are discussed separately, meaning that one is considered at the expense of the other. To overcome this problem, we present some strategies that automatically and simultaneously adjust the mixture number and escape from local optima. The evaluation results are very encouraging and show that the proposed strategies are effective.
    關聯: 淡江理工學刊=Tamkang journal of science and engineering 9(2),頁155-166
    DOI: 10.6180/jase.2006.9.2.10
    显示于类别:[資訊工程學系暨研究所] 期刊論文


    档案 大小格式浏览次数
    1560-6686_9-2-10.pdf1481KbAdobe PDF268检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈