English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9557465      線上人數 : 18283
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52774


    題名: On the Approach of Automatic Adjustments for Gaussian-Mixture Clustering
    作者: 郭經華;Kuo, Chin-hwa;Chou, Tzu-chuan;Chen, Meng-chang
    貢獻者: 淡江大學資訊工程學系
    關鍵詞: Parameter estimation of gaussian mixture;EM algorithm;Clustering algorithm;Local optima
    日期: 2006-06-01
    上傳時間: 2010-12-01 10:29:56 (UTC+8)
    出版者: 臺北縣:淡江大學
    摘要: In this paper, we discuss the dual-problem of adjusting the mixture number and avoiding local optima in the estimation of a Gaussian mixture. This estimation is widely used in unsupervised-classification applications; however, its results are serially sensitive to the initial setting, which is difficult to optimize. It is also difficult to automatically designate the mixture number in advance. In much of the literature, these two issues are discussed separately, meaning that one is considered at the expense of the other. To overcome this problem, we present some strategies that automatically and simultaneously adjust the mixture number and escape from local optima. The evaluation results are very encouraging and show that the proposed strategies are effective.
    關聯: 淡江理工學刊=Tamkang journal of science and engineering 9(2),頁155-166
    DOI: 10.6180/jase.2006.9.2.10
    顯示於類別:[資訊工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    1560-6686_9-2-10.pdf1481KbAdobe PDF377檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋