淡江大學機構典藏:Item 987654321/52568
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 62819/95882 (66%)
Visitors : 4003762      Online Users : 703
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52568


    Title: 集水區土地變遷對水質影響之關聯性分析
    Other Titles: Correlation analysis for watershed land change and water quality
    Authors: 黃郁強;Huang, Yu-chiang
    Contributors: 淡江大學水資源及環境工程學系碩士班
    康世芳;Kang, Shyh-fang
    Keywords: 集水區;土地變遷;水質;皮爾森積差相關;顯著性;迴歸分析;Watershed;land change;water quality;Pearson product-moment correlation;significance;regression analysis
    Date: 2010
    Issue Date: 2010-09-23 17:55:36 (UTC+8)
    Abstract: 本研究探討土地變遷與流量對水質影響,以翡翠水庫集水區為研究區,探討不同水質項目受流量大小的影響程度,應用皮爾森(Pearson)積差相關分析與顯著性檢定觀察受土地變遷影響較顯著的水質項目,以多元迴歸分析分別建立各水質項目之迴歸公式,最後模擬未來土地利用情境,帶入迴歸式以推估未來土地利用變遷對水質之影響。
    研究結果顯示:流量與水質濃度相關係最大為SS(R2=0.573);其次為總磷(R2=0.287)、氨氮(R2=0.149),流量大小與水質濃度具有正相關。土地利用型態改變對總磷、氨氮與硝酸鹽氮濃度的影響較其他水質項目顯著,而各種水質項目中,總磷及氨氮濃度受市集(R2>0.7)及農地(R2>0.6)影響最為顯著;硝酸鹽氮濃度則受林地影響最大(R2=0.727)。
    多元迴歸式帶入馬可夫鍊(Markov Chain)模型求得金瓜寮溪流域未來之土地利用變化情形,則2052年河川水質之總磷、氨氮與硝酸鹽氮濃度,將較2004年分別增加11.1、35.4與11.0 %。多元迴歸式帶入BAU(Business As Usual)求得之土地利用變化情形,則2052年河川水質之總磷、氨氮與硝酸鹽氮濃度,將較2004年分別增加46.1、132.0與17.4 %。若自2010年起農地面積發展速率增加10倍,則2052年河川中之總磷、氨氮與消酸鹽氮濃度,較農地面積正常發展分別提高69.6、108.9與105.7 %;其中總磷與氨氮濃度分別提高25.65 μg/L 與0.158 mg/L,並超過甲類水體標準。
    This study demonstrated the effects of land change and streamflow on water quality in Feitsui Reservoir Watershed and aimed to quantify the relationships rather than determining the qualitative interactions. Pearson product-moment correlation was used to identify the water quality those significantly affected by land change; furthermore, multiple regression analysis was applied to link the relationship. The derived regression equations were finally served as decision-making tools to predict the water quality in several future land use scenarios.
    The results showed that the most significant correlation between flow and water quality occurred in suspended solid (SS), which coefficient of determination (R2) is 0.573. The correlations in other water qualities were much low, i.e. 0.287 for total phosphorous (TP) and 0.149 for ammonia-nitrogen (NH4-N). Although the concentrations of all water quality increase with higher streamflow, the correlations are not confident except SS. In the contrary, the relations between land use and water quality were distinct, especially in TP, NH4-N and nitrate-nitrogen (NO3-N). The effect levels from various land use on water quality were different. Urban and agriculture land affected TP and NH4-N clearly, in which the R2 is more than 0.7 and 0.6, respectively. The influence of NO3-N was dominated by forest and the R2 was 0.727.
    Three land use scenarios were assumed. They are business as usual (BAU), forecast from Markov Chain model, and fastened development of agriculture. In the third scenario, the developing rate of agriculture is assumed 10 times than the past and the exceeded land is converted from forest land. Water quality was predicted under the land change scenario with multiple regression equations. The end year of prediction is set in 2052 and the base year to compare is 2004. The predicted water qualities are increasing in the calculation period under each scenario. The concentrations of TP, NH4-N, and NO3-N are increased 46.1%, 132.0%, and 17.4% in BAU scenario. While applying Markov Chain scenario, the increasing rate are less than those in BAU. If fastening the agriculture development in the study area, the concentrations of TP, NH4-N, and NO3-N will be higher 69.6%, 108.9%, and 105.7% than that in 2004. The concentration of TP and NH4-N will be 25.65 μg/L and 0.158 mg/L, both violate the water quality standard.
    Appears in Collections:[Graduate Institute & Department of Water Resources and Environmental Engineering] Thesis

    Files in This Item:

    File SizeFormat
    index.html0KbHTML308View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback