English  |  正體中文  |  简体中文  |  Items with full text/Total items : 58286/91808 (63%)
Visitors : 13830891      Online Users : 65
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/52542

    Title: 有效的目標定位系統應用於人形機器人足球場
    Other Titles: Efficient target localization system for Robocup
    Authors: 張世宏;Chang, Shih-hung
    Contributors: 淡江大學電機工程學系碩士班
    余繁;Ye, Fun
    Keywords: 人形機器人;自定位;距離量測;倒傳遞類神經網路;Humanoid soccer robot;Self-Localization;Distance measuring;Back propagation neural network
    Date: 2010
    Issue Date: 2010-09-23 17:54:22 (UTC+8)
    Abstract: 在機器人學與人工智慧研究不斷發展下,機器人足球比賽一直是一個具有意義且令人感興趣的研究領域之一,隨著人形足球機器人動作姿態與策略行為發展可知,人形機器人一直處於動態且未知的比賽環境,且機器人必須隨時掌握自己在足球場上的位置。為了要讓足球機器人在球場上有較好的競爭力,人形機器人之定位系統成為一個非常關鍵技術之一。
    本論文提出一套有效的機器人自定位系統,即基於視覺的適應性自定位系統(Adaptive Vision-Based Self-Localization System, AVBSLS),此足球機器人將整合頭部水平與垂直方向馬達和單眼攝影機資訊,完成機器人於足球場上之自定位。其自定位演算法開始先利用三角公式找尋機器人粗略的位置後,更進一步的採用類神經網路技術,自適性調整人形機器人在足球場上的位置。本研究著重在如何建構一套符合各種型號的攝影機且有效的機器人定位系統。一般以影像方式所完成之定位系統往往需要攝影機的內部參數,在此,我們利用一套有系統的方法自行量測攝影機之內部參數。根據上述所言,我們將能使用任何種類的攝影機並且準確的估測機器人在足球場上的位置。
    Robot soccer game is one of the significant and interesting topics among most of the artificial intelligence researches. Following the humanoid soccer robot basic movement and strategy actions, the robot is operated in a dynamic and unpredictable contest environment and must recognize the position of itself in the field all the time. Therefore, the localization system of the soccer robot becomes the key technology to improve the performance.
    This work proposes a new self-localization approach, Adaptive Vision-Based Self-Localization System (AVBSLS), for humanoid robot to integrate the information from the pan/tilt motors and a single camera to accomplish the self-localization. The proposed approach uses the trigonometric function to find the coarse location of the robot and further adopt the measuring artificial neural network technique to adjust the humanoid robot position adaptively. This research also focuses on how to establish an efficient robot localization system by using any type of CCD cameras. Generally the image-based localization system needs the intrinsic parameters. For the CCD camera adjustment, we propose a systematic method to measure the intrinsic parameters. By this approach, any type of CCD camera can be used to calculate the robot position precisely.
    The experimental results indicate that the average accuracy ratio of the localization is 92.3% under frame rate of 15 frames per second (fps).
    Appears in Collections:[Graduate Institute & Department of Electrical Engineering] Thesis

    Files in This Item:

    File SizeFormat

    All items in 機構典藏 are protected by copyright, with all rights reserved.

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback