English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 56562/90363 (63%)
造訪人次 : 11860205      線上人數 : 102
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/52499


    題名: A study on discrete wavelet transform for video compression and intelligent video surveillance system
    其他題名: 以離散小波轉換應用於視訊壓縮與智慧型視訊監控系統之探討
    作者: 夏至賢;Hsia, Chih-hsien
    貢獻者: 淡江大學電機工程學系博士班
    江正雄;Chiang, Jen-shiun
    關鍵詞: 智慧型監控系統;提升式離散小波轉換;直接低低頻遮罩法;高解析度;intelligent video surveillance system;lifting-based discrete wavelet transform;direct LL-mask based scheme;high resolution
    日期: 2010
    上傳時間: 2010-09-23 17:51:41 (UTC+8)
    摘要: 本論文將提供一個具有低成本且有效的二維離散小波轉換應用於智慧型視訊監控系統。其目的是將此技術應用於視訊壓縮以及電腦視覺中,利用離散小波轉換的特色發展出低轉置記憶體的超大型積體電路架構以及快速物件偵測演算法,以達到智慧型視訊監控系統的規格,並且兼具有簡單性、即時性、以及安全性的功能。在本論文中,我們將研究提升式離散小波轉換所產生出的缺點進而改良其演算法,再應用於智慧型視訊監控系統與視訊資料壓縮技術中並且達到即時處理。
    小波轉換已經在影像壓縮與處理中日漸重要,它允許在空間與頻率同時分析以及可調性視訊處理。基於離散小波轉換的特性,在本文中提出兩個新的方法:首先,我們提出新的二維雙模組提升式離散小波轉換硬體架構;在一般的二維提升式離散小波轉換中會有大量使用其轉置記憶體的缺點,其提出交錯讀取掃瞄演算法,以支援高解析度視訊以及減低轉置記憶體的成本,達到謹2N與4N(5/3或9/7模式)的使用量;另外,本方法以平行以及管線架構來增加運算時間,使其適用於Motion-JPEG2000。第二,我們提出對稱式遮罩法並利用於智慧型視訊監控系統;此方法改善二維提升式離散小波轉換的問題,以達到低延遲、低複雜度、以及低轉置記憶體;它可以達到低複雜度離散小波轉換運算以提高準確度與即時性的移動物件偵測系統,在測試的16個場景中,平均物件偵測的準確率與處理速度各別為89.59%以及每秒可執行47.1張影格數,並且應用於連續偵測之室內、外、以及日、夜間場景。
    在上述的兩種方法中均是以提升式離散小波轉換的改良為基礎。在實驗結果中得知,我們所提出的方法可以提供低轉置記憶體以及即時處理之效果應用於高解析度智慧型視訊監控系統。
    This thesis attempts to develop a low cost, practical application of a two-dimensional (2-D) discrete wavelet transform (DWT) to an intelligent video surveillance system. The goal is to combine the video compression and computer vision processing used in a wavelet-based system and to adopt DWT to develop a low transpose memory VLSI architecture and a fast object detection algorithm that can meet the specifications of intelligent video surveillance and can also process information easily, in real-time, and with safe functioning. This thesis investigates the fundamental concept behind the wavelet transform and provides an overview of some improved algorithms for lifting-based DWT (LDWT). The video surveillance system is able to detect moving object events, and video compression information is captured by surveillance cameras in real-time.
    Wavelet transformation has become increasingly important in image compression and processing since wavelets allow both simultaneous spatial and frequency analysis and scalable video processing. This thesis presents two new approaches. First, we propose new hardware architectures to address critical issues in 2-D dual-mode LDWT (supporting 5/3 lossless and 9/7 lossy coding modes). A considerably large transpose memory is the most critical requirement for LDWT. The proposed architecture can support high-resolution videos and reduce the internal memory requirement significantly. In our LDWT approach, the signal flow is revised from row-wise only to mixed row- and column-wise, and a new architecture, called interlaced read scan architecture (IRSA), is used to reduce the transpose memory. With the IRSA approach, the transpose memory size is only 2N or 4N (5/3 or 9/7 mode) for an N´N DWT. In addition, the proposed 2-D LDWT operates with parallel and pipelined schemes that increase its operation speed. It can be applied to real-time video operations for Motion-JPEG2000. Second, we propose the called symmetric mask-based DWT (SMDWT) for an intelligent video surveillance system. SMDWT improves the critical issue of the 2-D LDWT, and then obtains the benefit of low latency, reduced complexity, and low transpose memory. A highly precise and real-time moving object detection algorithm based on a low complexity SMDWT offers a mechanism for the sequential detection of both indoor (all day) and outdoor (all day) scenes. Computer simulations verified that the present algorithm performs well. It has high accuracy rate of more than 89.59% on average and the average frame rate can reach 47.1 frame per second (FPS).
    The abovementioned two algorithms for the LDWT were improved. The experimental results indicate that the proposed methods can provide low transpose memory and real-time processing for a high resolution intelligent video surveillance system.
    顯示於類別:[電機工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML381檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋