English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51510/86705 (59%)
Visitors : 8273776      Online Users : 107
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/52429


    Title: Thermal performance analysis of vapor chamber applying on multiple heat sources
    Other Titles: 應用於多重熱源之平板熱管熱傳分析
    Authors: 余駿生;Yu, Chun-sheng
    Contributors: 淡江大學機械與機電工程學系博士班
    康尚文;Kang, Shung-wen
    Keywords: 平板熱管;多重熱源;擴散熱阻;Vapor chamber;Multiple Heat Sources;Spreading Thermal Resistance
    Date: 2010
    Issue Date: 2010-09-23 17:40:49 (UTC+8)
    Abstract: 本論文研究目的為計算多熱源之等效面積與平板熱管尺寸對擴散熱阻的影響,比較理論解析與電腦數值模擬結果。主要動機為現今與擴散熱阻相關的文獻多以理論解析為主,主要以傳統金屬材料為探討方向,並以數值模擬與實驗之結果比對。面對現今系統散熱設計,隨著多熱源以及高發熱瓦數晶片在高階電子系統的應用,本文以推導等效熱源面積關係式,探討多熱源散熱模組在設計上所需考慮的參數,配合電腦數值模擬提出改善散熱模組散熱效能的最佳化設計方法,本論文中將設計參數代入無因次等效熱源面積關係式,並將之運用於多熱源熱傳遞的分析,藉由比較熱阻方程式、電腦模擬分析結果與實驗數據之差異,提出建立熱源發熱功率、熱源面積、平板熱管厚度及熱源相對位置之間熱傳導與熱對流熱阻的參數最佳設計區間,並參考Bi數作為瞭解小面積熱源的熱傳遞模式,以為應用平板熱管散熱模組最佳化設計之基礎。
    對於本研究所探討之多熱源平板熱管散熱模組最佳設計,配合多熱源散熱模組之實驗量測,熱源的最高溫度值誤差為3.3%,利用等效熱源關係式以電腦數值模擬的方法可以準確的預測多熱源在平板熱管散熱模組的熱傳機制。
    The objective of this thesis is to compute the spreading thermal resistance of multiple heat sources on a vapor chamber module, as well as the surface temperatures and the heat flux distributions at the heating surface. The analytical correlations are expressed in a dimensionless with the governing parameters of the relative distance dimensions between heat sources and dimensionless heat sources size on heat spreader, including a vapor chamber and metal materials evaluation, subject to the influence of multiple heat sources. This study also presents vapor chamber temperature distribution on heat spreader contact surface, and it correlates to heat sources number and distance. Hence, spreading thermal resistance decreases with the increasing lateral length of vapor chamber. There is large difference between spreading and conductive thermal resistance as lateral length is disproportion to heat source heating area. Therefore, spreading thermal resistance is an important factor when design the thermal solution of a high density chipset power, and it caused high temperature in heat sources which embedded a thinner heatsink base, especially. Spreading thermal resistance is disproportion to heat spreader size, material conductivity, then conductive thermal resistance is not the only parameter for vapor chamber module design, it needs to consider the spreading resistance effect of a vapor chamber and multiple heat sources array, Bi number can be fairly understood by imagining the heat flow from small and hot heat sources suddenly immersed in a pool, to the surrounding fluid. Numerical simulation results of the integrated vapor chamber module are carried out with the mathematical model. The computed results are in good agreement with the experiments, and deliver a difference of 3.3% for the maximum heat source temperature rises, and it presents predictable thermal phenomena of a vapor chamber applying on multiple heat sources.
    Appears in Collections:[機械與機電工程學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML257View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback