淡江大學機構典藏:Item 987654321/52411
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64185/96959 (66%)
Visitors : 11339884      Online Users : 103
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52411


    Title: 英文介係詞的錯誤偵測與更正
    Other Titles: Detection and correction for English preposition error
    Authors: 張愷達;Chang, Kai-da
    Contributors: 淡江大學資訊工程學系碩士班
    郭經華
    Keywords: 貝氏理論;content word;function word;機器學習;統計模型;加權;Bayesian theory;content word;function word;Machine learning;statistical model;Weighting
    Date: 2010
    Issue Date: 2010-09-23 17:36:40 (UTC+8)
    Abstract: 本篇論文提出了一個針對英語介係詞錯誤的偵測與更正系統,目的在於幫助ESL(English as second language)環境的英語學習者了解英語介係詞的用法。
    本系統擁有幾項特質。首先,由於應用貝氏理論,因此本系統在效能上能有不錯的表現。再者,本系統應用了英語文法上的概念:content word與function word概念,因此我們可以觀察每個單字所包含的語意多寡是否會影響介係詞的選擇。
    本系統包含了三種類型的演算法,運用統計模組、貝氏理論的基本演算法,根據套用不同出現機率的加權演算法,應用英語文法中content word、function word概念演算法。在數據討論我們將後二者演算法與基準演算法比較可發現在精確值與回饋值上的改進。
    This paper presents a system within detection and correction for English preposition errors, the objective is to help the ESL (English as second language) learners in learning the usage of preposition.
    The system has some special features. First, it applies the Bayesian theory so it presents nice performance in efficiency. Second, it applies some concepts in English grammar: the content word and the function word, we can observe the influence on the choice of prepositions from each word’s semantic meaning.
    There are 3 types of algorithms in our system, the first is the baseline algorithm with statistical model using Bayesian theory, the second is the weighting algorithm depends on the kind of frequency it catches, the third is the algorithm applying the concept of content word and function word. In the Discussion we compare latter two algorithms with baseline algorithm and we can find some improvements from examining precision and recall.
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Thesis

    Files in This Item:

    File SizeFormat
    index.html0KbHTML251View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback