淡江大學機構典藏:Item 987654321/52404
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8292519      在线人数 : 7270
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52404


    题名: 客戶重覆購買行為分析
    其它题名: Analysis on customer’s repeat-buying behavior
    作者: 朱韋恩;Chu, Wei-en
    贡献者: 淡江大學資訊工程學系碩士班
    蔣定安;Chiang, Ding-an
    关键词: 序列型樣;週期挖掘;重覆購買;時間資料探勘;Sequential Patterns Mining;Periodic Mining;Repeat-Buying;Temporal Mining
    日期: 2010
    上传时间: 2010-09-23 17:36:22 (UTC+8)
    摘要: 在處理大量資料分析,利用序列型樣(Sequential Patterns)分析顧客消費資料時,只能得到產品的購買先後順序,卻無法得知產品先後購買的間隔時間,以至於無法了解此產品的消費週期,導致分析師無法在最適當的時間給予最有利的行銷。
      本論文將以時間性的資料探勘技術,建立重覆購買序列型樣的數學模型,尋找出序列型樣中各事件的次序、間隔時間,找出實際消費行為中的變化與規律關係,包括:是否具有週期關係、是否具有重覆購買週期等等。透過此模型以利分析師可以更準確的了解各產品的消費特性,在最佳的時間點擬定最有利的行銷策略,以獲得最加收益。
    In processing huge transaction data analysis, when we use Sequential Patterns Mining techniques to discover the buying behaviors of customers, we just can only get the order of the items purchased, but we are hard to find out the time intervals of related items purchased.So that we can not know the period of the product, lead to analysts can not give the most advantageous marketing in the most appropriate time.

    The aim of the this research is to develop a methodology to detect of the existence of repeat-buying behavior and discover the potential period of repeat-buying behavior. Using this model can facilitate the analysts to understand the product consumption characteristics more accurate, and let the analysts to determine the most advantageous marketing strategy in the best time, then the corresponding actions can be taken to maximize enterprise’s revenue.
    显示于类别:[資訊工程學系暨研究所] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML236检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈