淡江大學機構典藏:Item 987654321/52334
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9715571      Online Users : 19406
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52334


    Title: 應用多層次架構之類別優先度與多重分類器改善文件分類準確率
    Other Titles: Adopting the framework of multi-level class priority with multiple classifiers to improve the accuracy of text classification
    Authors: 董純賢;Tung, Chun-hsien
    Contributors: 淡江大學資訊工程學系碩士在職專班
    蔣定安;Chiang, Ding-an
    Keywords: 關聯式分類法;規則排序;規則相依性;多層次類別優先;Associative Classification;Ranking;Rule Dependency;Multi-level Class Priority
    Date: 2010
    Issue Date: 2010-09-23 17:33:26 (UTC+8)
    Abstract: 一般關聯式分類法(Associative Classification, AC)通常依照準則排序,然而規則與規則間存在著規則相依性(Rule Dependency)的問題,在相同的信賴值、支援值、長度的條件下,規則的執行順序仍然會對分類結果造成影響。
    本論文核心針對規則排序問題,除了採用Lazy法則為一般排序原則針對100%信賴值階層進行文件分類外,並刪除分類過文件重新計算信賴值排序,加上採用多層次類別優先度的概念,來探討其對分類效能的影響。利用TFIDF權重及貝氏分類器初次分類後所得之最低類別準確率設為單一靜態門檻值,AC無法分類之文件則以貝氏分類器來分類,以解決關聯式分類器預設類別降低分類準確率的問題。
    Regardless that the associative classification (AC) [1][2] method normally ranks the sequence according to the prescribed criteria, yet in terms of the problem of rule dependency that exists between rules, under the identical confidence value, support value and length criteria, the sequence by which the rules are executed can still impact the classification results.
    The core of the thesis, focusing on rule ranking problems, entails for more than adopting the Lazy[3] method as the general ranking principle for conducting document classification focusing on 100% confidence level, but also by pruning the classified documents to recalculate the confidence value ranking, together with using a multilevel class priority concept, to examine how it affects the classification performance. The TFIDF[4] weighing and the minimum classification criteria derived from the preliminary classification using the Naïve Bayes[5] classifier are used to define a single still-mode threshold value, and the Naïve Bayes classifier used to classify documents unclassifiable by the associative classification method, aiming to resolve the problem of lowering the classification precision rate due to the preset categories when using the associative classifiers.
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Thesis

    Files in This Item:

    File SizeFormat
    index.html0KbHTML314View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback