English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9362820      線上人數 : 14919
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52334


    題名: 應用多層次架構之類別優先度與多重分類器改善文件分類準確率
    其他題名: Adopting the framework of multi-level class priority with multiple classifiers to improve the accuracy of text classification
    作者: 董純賢;Tung, Chun-hsien
    貢獻者: 淡江大學資訊工程學系碩士在職專班
    蔣定安;Chiang, Ding-an
    關鍵詞: 關聯式分類法;規則排序;規則相依性;多層次類別優先;Associative Classification;Ranking;Rule Dependency;Multi-level Class Priority
    日期: 2010
    上傳時間: 2010-09-23 17:33:26 (UTC+8)
    摘要: 一般關聯式分類法(Associative Classification, AC)通常依照準則排序,然而規則與規則間存在著規則相依性(Rule Dependency)的問題,在相同的信賴值、支援值、長度的條件下,規則的執行順序仍然會對分類結果造成影響。
    本論文核心針對規則排序問題,除了採用Lazy法則為一般排序原則針對100%信賴值階層進行文件分類外,並刪除分類過文件重新計算信賴值排序,加上採用多層次類別優先度的概念,來探討其對分類效能的影響。利用TFIDF權重及貝氏分類器初次分類後所得之最低類別準確率設為單一靜態門檻值,AC無法分類之文件則以貝氏分類器來分類,以解決關聯式分類器預設類別降低分類準確率的問題。
    Regardless that the associative classification (AC) [1][2] method normally ranks the sequence according to the prescribed criteria, yet in terms of the problem of rule dependency that exists between rules, under the identical confidence value, support value and length criteria, the sequence by which the rules are executed can still impact the classification results.
    The core of the thesis, focusing on rule ranking problems, entails for more than adopting the Lazy[3] method as the general ranking principle for conducting document classification focusing on 100% confidence level, but also by pruning the classified documents to recalculate the confidence value ranking, together with using a multilevel class priority concept, to examine how it affects the classification performance. The TFIDF[4] weighing and the minimum classification criteria derived from the preliminary classification using the Naïve Bayes[5] classifier are used to define a single still-mode threshold value, and the Naïve Bayes classifier used to classify documents unclassifiable by the associative classification method, aiming to resolve the problem of lowering the classification precision rate due to the preset categories when using the associative classifiers.
    顯示於類別:[資訊工程學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML313檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋