淡江大學機構典藏:Item 987654321/52331
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9370820      Online Users : 14844
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/52331


    Title: Risk factor identification and mortality prediction in abdominal aortic surgery using artificial intelligence
    Other Titles: 以人工智慧識別腹主動脈瘤手術危險因子及死亡率預測
    Authors: 詹千慧;Chan, Chien-hui
    Contributors: 淡江大學資訊工程學系碩士班
    葛煥昭
    Keywords: 主動脈瘤修復;手術後併發症;集成式模型;機器學習;馬可夫覆蓋;Aortic aneurysm repair;postoperative morbidity;ensemble model;Machine learning;Markov blanket
    Date: 2010
    Issue Date: 2010-09-23 17:33:19 (UTC+8)
    Abstract: 本研究提出一集成式腹主動脈瘤手術後併發症預測模型,本模型以1994年至2008年間進行腹主動脈瘤手術之病患資料進行訓練,本研究結果包括一集成式術後併發症預測模型、術後併發症預測記錄及因果關係決策規則,本模型所計算出之併發症機率與實際發生併發症事實比較,並以接收操作特徵曲線(ROC curve) 進行術後併發症預測模型之準確性評估。經過一系列測試,貝式網路(BN)、類神經網路(NN)及支持向量機(SVM)所集成之模型對於腹主動脈瘤修復術術後併發症預測可提供良好的效能。此外,貝式網路之馬可夫覆蓋提供了以粒子計算所產生的基本決策規則而自然形成之因果關係特徵選取。
    This study proposes an ensemble model to predict postoperative morbidity after abdominal aortic surgery. The ensemble model was developed using a training set of consecutive patients who underwent abdominal aortic aneurysm (AAA) repair between 1994 and 2008. The research outcomes consisted of an ensemble model to predict postoperative morbidity, the occurrence of postoperative complications prospectively recorded, and the causal-effect decision rules. The probabilities of complication calculated by the model were compared to the actual occurrence of complications and a receiver operating characteristic (ROC) curve was used to evaluate the accuracy of postoperative morbidity prediction. In this series, the ensemble of BN, NN and SVM models offered satisfactory performance in predicting postoperative morbidity after AAA repair. Moreover, the Markov blankets of BN allow a natural form of causal-effect feature selection, which provides a basis for screening decision rules generated by granular computing.
    Appears in Collections:[Graduate Institute & Department of Computer Science and Information Engineering] Thesis

    Files in This Item:

    File SizeFormat
    index.html0KbHTML410View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback