淡江大學機構典藏:Item 987654321/51903
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9408509      Online Users : 9445
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/51903


    Title: 應用灰色支援向量迴歸預測國際旅遊需求
    Other Titles: Application of grey support vector regression in forecasting international tourism demand
    Authors: 詹淑鳳;Chan, Shu-feng
    Contributors: 淡江大學管理科學研究所碩士班
    曹銳勤;Tsaur, Ruey-chyn
    Keywords: 支援向量迴歸;灰色理論;國際旅遊需求;灰色支援向量迴歸;support vector regression (SVR);grey theory;international tourism demand;grey support vector regression
    Date: 2010
    Issue Date: 2010-09-23 16:15:26 (UTC+8)
    Abstract: 預測國際旅遊需求的研究最近越來越受到矚目,因此,預測旅遊需求人數是很重要的,至今已經有很多的文獻做過不同國家的旅遊需求分析。近來,中國大陸為世界旅客輸出最大的出境國家,且拜直航之賜,來台觀光團費大幅調降,更是大大提高陸客來台意願,所以,預測大陸來台旅遊的人數對台灣觀光旅遊的規劃與發展是很重要的議題。但開放至目前的時間尚短,相對來說,資料量就略顯稀少,且正因為剛開放,陸客來台旅遊數量未趨穩定,資料變異較大,目前並未有一個適合的預測方法可以應用,故本研究利用灰色預測方法可處理少資料的特性和支援向量機估計風險最低的優點,提出了將兩者混合的預測模式──灰色支援向量迴歸模式(Grey Support Vector Regression, GSVR);並以MAPE作為預測績效衡量指標。實證結果顯示GSVR模式(MAPE=19.0025%)表現明顯優於簡單迴歸模式(MAPE=39.7775%)、指數平滑模式(MAPE=38.0638%)及GM(1,1)模式(MAPE=46.4863%),並可成功外插預測2010年1月的大陸來台旅遊人數,MAPE值可達0.96%。
    The tourism industry, which benefits the transportation, accommodation, catering, entertainment and retailing sectors, has been blooming in the past few decades. The 20th century witnessed a steady increase in tourism all over the word. Each country wants to know its international visitors and tourism receipts in order to choose an appropriate strategy for its economic well-being. In Taiwan, the visitors from China become possible since 2008 whereas the data is limit, fluctuated and difficult to forecast in tourism planning. In order to cope with this problem, we use the both advantages of support vector regression and grey theory to construct a new model – Grey Support Vector Regression (GSVR). Estimated China tourists were compared with actual published China tourists by MAPE. Empirical results demonstrate GSVR model (MAPE = 19.0025%) showed significantly better than simple regression models (MAPE = 39.7775%), single exponential smoothing model (MAPE = 38.0638%) and GM (1, 1) (MAPE = 46.4863%), and can successfully extrapolation 2010/1 of China tourists, MAPE values up to 0.96%.
    Appears in Collections:[Department of Management Sciences] Thesis

    Files in This Item:

    File SizeFormat
    index.html0KbHTML287View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback