淡江大學機構典藏:Item 987654321/51884
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 64178/96951 (66%)
造訪人次 : 9304617      線上人數 : 205
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/51884


    題名: λ重完全圖分割成箏形圖
    其他題名: Decomposition of λKn into kites
    作者: 鄭智中;Cheng, Chih-chung
    貢獻者: 淡江大學數學學系碩士班
    高金美;Kau, Chin-mei
    關鍵詞: 完全圖;λ重完全圖;分割;箏形圖;complete graph;λ-fold complete graph;decomposition;kite
    日期: 2010
    上傳時間: 2010-09-23 16:14:32 (UTC+8)
    摘要: 一個含有n個點的簡單圖,其中任意兩點皆有一邊相連,則稱此圖為一個完全圖,記為Kn。若一個n點的重邊圖,任意兩點皆有λ個邊相連,則稱此圖為一個λ重完全圖,記為λKn。
    一個圖H的點集合為V(H)={a,b,c,d},邊集合為E(H)={{a,b},{a,c},{b,c},{c,d}},則稱此圖H為箏形圖,記為(a,b,c; d)或(b,a,c; d)。
    設G1, G2, …, Gt為圖 Kn 的子圖,若滿足以下條件:
    (1) E(G1)∪E(G2)∪…∪E(Gt) = E(Kn);
    (2) 對於1≦i≠j≦n, E(Gi)∩E(Gj) = ∅,
    則稱Kn可分割成G1, G2, …, Gt。若Gi與箏形圖H同構,i=1, 2, …, n,則稱Kn可分割成箏形圖H。
    設H為Kn的子圖,且H為箏形圖,λKn可分割成箏形圖H,表示可將λKn中的所有邊分成幾個子集合,每個子集合可形成一個箏形圖H,且Kn中的任一邊出現在λ個相異箏形圖H中。
    在本篇論文中,我們證明了:
    λ≡1,3 (mod 4),且 n≡0,1 (mod 8) ⇔ λKn可分割成箏形圖。
    λ≡2 (mod 4),且 n≡0,1 (mod 4) ⇔ λKn可分割成箏形圖。
    λ≡0 (mod 4),且 ∀n≥4 ⇔ λKn可分割成箏形圖。
    A simple graph with n vertices satisfies that every two vertices are joined by an edge, then we call this graph a complete graph with n vertices, denoted by Kn. If a multigraph with n vertices satisfies that every two vertices are joined by λ edges, then we call this graph a λ-fold complete graph with n vertices, denoted by λKn.
    Let H be the graph with the vertex set {a, b, c, d} and the edge set {{a, b}, {a, c}, {b, c}, {c, d}} ,we call H a kite graph, denoted by (a, b, c; d) or (b, a, c; d).
    Let G1, G2, …, Gt be subgraphs of Kn. If they satisfy the following conditions:
    (1) E(G1)∪E(G2)∪…∪E(Gt) = E(Kn)
    (2) ∀1≦i≠j≦n, E(Gi)∩E(Gj) = ∅
    then we call λKn be decomposed into G1, G2, …, Gt. If Gi is isomorphic to a graph H, for each i = 1, 2, …, n, then we call Kn be decomposed into graphs H.
    Let H be a subgraph of Kn. If all edges of λKn can be partitioned into subsets which form a kite graph H and each edge of λKn is contained in λ different kite graphs H, then we call λKn can be decomposed into kite graphs H.
    In this thesis, we proved that
    (1) λ≡1,3 (mod 4) and n≡0,1 (mod 8) ⇔ λKn can be decomposed into kites.
    (2) λ≡2 (mod 4) and n≡0,1 (mod 4) ⇔ λKn can be decomposed into kites.
    (3) λ≡0 (mod 4) and ∀n≥4 ⇔ λKn can be decomposed into kites.
    顯示於類別:[應用數學與數據科學學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML401檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋