English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8005741      Online Users : 80
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/51865


    Title: 關於阿達瑪型不等式之研究及其應用
    Other Titles: On some inequalities of Hadamard’s type and applications
    Authors: 許凱程;Hsu, Kai-chen
    Contributors: 淡江大學數學學系博士班
    楊國勝;Yang, Gou-sheng
    Keywords: 赫米提-阿達瑪不等式;費伊爾不等式;凸向函數;梯形公式;Hermite-Hadamard’s inequality;Fejer’s inequality;Convex function;Trapezoidal formula
    Date: 2010
    Issue Date: 2010-09-23 16:13:32 (UTC+8)
    Abstract: 本篇論文共分為五章。第一章中,我們探討赫米提-阿達瑪(Hermite-Hadamard)與費伊爾(Fejér)所提出的不等式如下,令f:[a,b]->R為凸函數,g:[a,b]->R為非負可積分函數且對稱於x=(a+b)/2,則
    f((a+b)/2)<=1/(b-a)*int{f(x),x=a..b}<=(f(a)+f(b))/2

    f((a+b)/2)*int{g(x),x=a..b}<=int{f(x)g(x),x=a..b}<=(f(a)+f(b))/2)*int{g(x),x=a..b}
    之後談論一些本論文中所引用的有關阿達瑪與費伊爾不等式的改善、推廣以及應用的結果。第二章中,我們首先介紹簡笙(Jensen)不等式,接著談論Dragomir、Hong、Milosević、Sándor與Yang所發表有關阿達瑪不等式的改善、推廣的結果,並提供詳細的證明。
    在第三章中,我們將對Dragomir、Hong、Milosević、Sándor與Yang所發表的結果做進一步的推廣及改善。在第四章中,我們建立有關一凸向、可微分函數且函數求導函數加絕對值依然是凸向的不等式,此不等式與費伊爾右不等式有關,並且為Dragomir與Agarwal的推廣。
    最後在第五章,我們將談論在第三章與第四章結果的應用,分別為特殊平均數、隨機變數與加權梯形公式。
    In this dissertation, it consists of five chapters. In the first chapter, we introduce Hermite-Hadamard and Fejér inequality. The inequalities are
    f((a+b)/2)<=1/(b-a)*int{f(x),x=a..b}<=(f(a)+f(b))/2
    and
    f((a+b)/2)*int{g(x),x=a..b}<=int{f(x)g(x),x=a..b}<=(f(a)+f(b))/2)*int{g(x),x=a..b}
    where f:[a,b]->R is a convex function and g:[a,b]->R is nonnegative integral function such that g is symmetric to .In the second chapter, there is an introduction of documenting famous Jensen’s inequality and the refinements as well as the generalizations of the Hermite-Hadamard’s inequality which was found by Dragomir, Hong, Milosević, Sándor and Yang, respectively. Furthermore, we give some examples of their proof.
    In the third chapter, we establish some inequalities that are related to the refinements of the Hadamard’s inequality base on Dragomir, Hong, Milosević, Sándor and Yang’s results. In the forth chapter, we establish some inequalities for differentiable convex mappings whose derivatives in absolute value are convex. This results are connected with Fejér’s inequality holding for convex mappings which are generalizations of Dragomir and Agarwal’s results.
    Finally, we discuss its applications to some special means, the weighted trapezoidal formula, r-moment, and the expectation of a symmetric and continuous random variable.
    Appears in Collections:[數學學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML215View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback