Abstract: | 一個具有n個點的圖中,若任意兩點皆有邊相連,我們稱此圖為n個點的完全圖,記作Kn。一個具有n個點的連通圖,其每一點的度數皆為2,我們稱此圖為n-迴圈,記作Cn。令C5的頂點分別為v1、v2、v3、v4和v5,並在C5外面加入5個頂點為w1、w2、w3、w4和w5及5條邊{vi,wi},1≦i≦5,則稱此圖為5-太陽圖,記作S(C5)。 設G為一個簡單圖,G1, G2, …, Gt為G的子圖,若滿足下列條件: (1) E(G1)∪E(G2)∪...∪E(Gt)= E(G) (2) 對於1≦i≠j≦t,E(Gi)∩E(Gj)= Ø 則稱G可分割為G1, G2,…, Gt。若G1, G2,…, Gt都與H同構,則稱G可分割成H。 在本論文中,我們證明了: (1) 當n≡1 (mod 20)時,Kn可分割成5-太陽圖。 (2) 當n≡0 (mod 20)時,Kn可分割成5-太陽圖。 (3) 當n≡5 (mod 20)時,Kn可分割成5-太陽圖。 (4) 當n=16,36時,Kn可分割成5-太陽圖。 A graph with n vertices in which every pair of distinct vertices is connected by a unique edge is called a complete graph with n vertices, denoted by Kn. A graph with n vertices in which every vertex has degree 2 is called a cycle, denoted by Cn. Let {v1, v2, v3, v4, v5} be the vertex set of C5. If we add another five vertices w1, w2, w3, w4, w5 and five edges {vi, wi}, 1≦i≦5, then we call this graph a 5-sun graph, denoted by S(C5). Let G be a simple graph and G1,G2,…,Gt be subgraphs of G. If G1,G2,…,Gt satisfy the following conditions: (1) E(G1)∪E(G2)∪...∪E(Gt)= E(G) (2) ∀1≦i≠j≦t,E(Gi)∩E(Gj)= Ø , then we call G can be decomposed into G1, G2, …, Gt. If G1, G2, …, Gt are isomorphic to H, then we call G can be decomposed into H. In this thesis, we prove that: (1) if n≡1 (mod 20), then Kn can be decomposed into 5-sun graphs. (2) if n≡0 (mod 20), then Kn can be decomposed into 5-sun graphs. (3) if n≡5 (mod 20), then Kn can be decomposed into 5-sun graphs. (4) if n=16, 36, then Kn can be decomposed into 5-sun graphs. |