English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64178/96951 (66%)
Visitors : 9435627      Online Users : 9015
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/51864


    Title: 完全圖分割成5-太陽圖的探討
    Other Titles: Decomposition of complete graphs into 5-sun graphs
    Authors: 黃逸齊;Huang, Yi-chi
    Contributors: 淡江大學數學學系碩士班
    高金美;Kau, Chin-mei
    Keywords: 完全圖;5-太陽圖;分割;complete graph;5-sun graph;decomposition
    Date: 2010
    Issue Date: 2010-09-23 16:13:30 (UTC+8)
    Abstract: 一個具有n個點的圖中,若任意兩點皆有邊相連,我們稱此圖為n個點的完全圖,記作Kn。一個具有n個點的連通圖,其每一點的度數皆為2,我們稱此圖為n-迴圈,記作Cn。令C5的頂點分別為v1、v2、v3、v4和v5,並在C5外面加入5個頂點為w1、w2、w3、w4和w5及5條邊{vi,wi},1≦i≦5,則稱此圖為5-太陽圖,記作S(C5)。
    設G為一個簡單圖,G1, G2, …, Gt為G的子圖,若滿足下列條件:
    (1) E(G1)∪E(G2)∪...∪E(Gt)= E(G)
    (2) 對於1≦i≠j≦t,E(Gi)∩E(Gj)= Ø
    則稱G可分割為G1, G2,…, Gt。若G1, G2,…, Gt都與H同構,則稱G可分割成H。
    在本論文中,我們證明了:
    (1) 當n≡1 (mod 20)時,Kn可分割成5-太陽圖。
    (2) 當n≡0 (mod 20)時,Kn可分割成5-太陽圖。
    (3) 當n≡5 (mod 20)時,Kn可分割成5-太陽圖。
    (4) 當n=16,36時,Kn可分割成5-太陽圖。
    A graph with n vertices in which every pair of distinct vertices is connected by a unique edge is called a complete graph with n vertices, denoted by Kn. A graph with n vertices in which every vertex has degree 2 is called a cycle, denoted by Cn. Let {v1, v2, v3, v4, v5} be the vertex set of C5. If we add another five vertices w1, w2, w3, w4, w5 and five edges {vi, wi}, 1≦i≦5, then we call this graph a 5-sun graph, denoted by S(C5). Let G be a simple graph and G1,G2,…,Gt be subgraphs of G.
    If G1,G2,…,Gt satisfy the following conditions:
    (1) E(G1)∪E(G2)∪...∪E(Gt)= E(G)
    (2) ∀1≦i≠j≦t,E(Gi)∩E(Gj)= Ø
    , then we call G can be decomposed into G1, G2, …, Gt. If G1, G2, …, Gt are isomorphic to H, then we call G can be decomposed into H.
    In this thesis, we prove that:
    (1) if n≡1 (mod 20), then Kn can be decomposed into 5-sun graphs.
    (2) if n≡0 (mod 20), then Kn can be decomposed into 5-sun graphs.
    (3) if n≡5 (mod 20), then Kn can be decomposed into 5-sun graphs.
    (4) if n=16, 36, then Kn can be decomposed into 5-sun graphs.
    Appears in Collections:[應用數學與數據科學學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML277View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback