淡江大學機構典藏:Item 987654321/51860
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 64191/96979 (66%)
Visitors : 8061305      Online Users : 10356
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/51860


    Title: 完全圖分割成4-迴圈或漢米爾頓迴圈之探討
    Other Titles: Decomposition of complete graph into 4-cycles or Hamilton cycles
    Authors: 何婉嫙;Ho, Wan-hsuan
    Contributors: 淡江大學數學學系碩士班
    高金美;Kau, Chin-mei
    Keywords: ;完全圖;分割;迴圈;漢米爾頓迴圈;graph;complete graph;decomposition;cycle;Hamilton cycle
    Date: 2010
    Issue Date: 2010-09-23 16:13:17 (UTC+8)
    Abstract: 當一個含有 n 個點的簡單圖中,任意兩點皆有邊相連,則稱此圖為完全圖,記為 K_n;當一個含有 n 個點的連通圖,若其每一個點的度數皆為 2,則稱此圖為 n-迴圈,記為 C_n。
    若一個完全圖 K_n可分割成4-迴圈或 n-迴圈是指 K_n中的邊可分割成一些邊均相異的4-迴圈或 n-迴圈,且這些迴圈之邊的聯集即為 K_n中的邊集合。
    在本篇論文中,我們證明了:
    (1) 當 n 為奇數且 n≥3 時,設 α,β 為正整數或零,若 4α+βn=(n(n-1))/2 ,則 K_n 可以分割成 α 個4-迴圈以及 β 個漢米爾頓迴圈。
    (2) 當 n 為偶數且 n≥4 時,設 α,β 為正整數或零,若 4α+βn=(n(n-2))/2 ,則 K_n-I 可以分割成 α 個4-迴圈以及 β 個漢米爾頓迴圈,其中 I 為 K_n 的一個1-因子。
    A complete graph with n vertices is a simple graph in which every pair of distinct vertices is connected by a unique edge, denoted by K_n.
    The cycle is a connected graph with n vertices which all vertices are degree 2 and denoted by C_n.
    A complete graph K_n can be decomposed into 4-cycles and n-cycles if K_n can be partitioned into edge-disjoint 4-cycles and n-cycles such that the union of edge sets of these cycles is the edge set of K_n.
    In this thesis, we prove that:
    (1) For odd integer n, n≥3, if there exists nonnegative integers α and β such that 4α+βn=(n(n-1))/2 , then K_n can be decomposed into α 4-cycles and β n-cycles.
    (2) For even integer n, n≥4, if there exists nonnegative integers α and β such that 4α+βn=(n(n-2))/2 , then K_n-I can be decomposed into α
    4-cycles and β n-cycles, where I is a 1-factor of K_n.
    Appears in Collections:[應用數學與數據科學學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML273View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback