English  |  正體中文  |  简体中文  |  Items with full text/Total items : 51258/86283 (59%)
Visitors : 8024853      Online Users : 77
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/51752


    Title: 風險分類不完全下的交叉補貼效果 : 以性別變數為例
    Other Titles: The cross-subsidization from imperfect risk-classification : imperfectly risk classification of gender
    Authors: 謝淑榕;Shie, Shu-rong
    Contributors: 淡江大學保險學系保險經營碩士班
    汪琪玲;Wang, Kili C.
    Keywords: 風險分類;逆選擇;交叉補貼;損失幅度;Risk Classification;Adverse Selection;Cross Subsidization;Loss Severity
    Date: 2010
    Issue Date: 2010-09-23 15:59:57 (UTC+8)
    Abstract: 根據交通部統計處報告,顯示家中僅有一輛車者通常由男性使用;汽車保險自用汽車條款中,被保險人範圍包含甚廣;保發中心統計資料呈現出, 25歲以上之已婚女性,相較未婚女性,有較高的出險次數及賠款金額。在此背景下,不免令人聯想,台灣「保單被保險人為女性,但實際駕駛為男性」的現象,似乎普遍存在。故本文透過實證研究來驗證,保險公司面臨無法觀察車主與駕駛者不一致之隱藏訊息而帶來風險分類不完全問題,所造成的交叉補貼效果。
    研究上,以已出險之保單為樣本,觀察保單之損失幅度,將出險金額除以保費後,所得之損失率,以保險公司使用的風險分類變數以及控制個人非齊一性之特性變數,對損失率進行迴歸,分析保險公司是否並未依照風險分類確實訂價。其次,以上述迴歸中之殘差部位(殘差損失率)被解釋變數,以「保單被保險人為女性,但實際駕駛為男性」這項隱藏訊息為解釋變數,分析保險公司在這項隱藏訊息上,所產生的交叉補貼效果,並以險種與通路思維從旁佐證,以降低道德風險對損失率可能產生影響的混淆。實證結果發現:(1)某些特性變數對保單損失率還有很顯著的解釋力,表示保險公司確實沒有完全運用風險分類變數來訂價;(2)對殘差損失率的解釋發現,保險公司無法觀察「保單被保險人為女性,但實際駕駛為男性」的隱藏變數,確實使得這群實際駕駛者,被其他保單所補貼,而體現在「女性投保丙式車體損失險,但男性為實際駕駛者」、「女性透過非車商通路投保,男性為實際駕駛者」,結果亦是如此。
    It is the fact that the insureds of automobile insurance are different from real drivers in Taiwan. In intuition, female and the married were less involved in an accident. However, the Taiwan Insurance Institute shows, over the age of 25 married women who have a higher percentage of loss frequency and severity compared with unmarried women. In addition, the Ministry of Transportation and Communications Department of Statistics indicates that only a vehicle is used usually by the male in the family. Thus, the purpose of this paper is to show whether the insurers can’t observe the hidden information that the insured is different from the real driver, and focus on the variable of gender to find the empirical evidence of the cross-subsidization from imperfect risk-classification. We employ the OLS regression method and measure the loss ratio in terms of loss severity. As a result, we find the evidence that many variables have not be sorted out completely. Futhermore, the findings that cross subsidization with the policies of the female insured is different from the real driver, especially in collision automobile insurance and non-dealer of car associated with the sale of automobile insurance.
    Appears in Collections:[保險學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML179View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback