English  |  正體中文  |  简体中文  |  Items with full text/Total items : 49633/84879 (58%)
Visitors : 7693991      Online Users : 70
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/51545


    Title: 應用基因演算法於KMV模型違約點定義之檢討
    Other Titles: Applying genetic algorithms in the definition of KMV model’s default point
    Authors: 洪世庠;Hung, Shih-hsiang
    Contributors: 淡江大學財務金融學系碩士班
    李沃牆;Lee, Wo-chiang
    Keywords: KMV模型;基因演算法;違約間距;違約機率;違約點;KMV;Genetic Algorithms;Distance to Default;Default Point
    Date: 2010
    Issue Date: 2010-09-23 15:25:02 (UTC+8)
    Abstract: 本研究之目的在於針對KMV模型對於違約點之設定,並檢定此違約點是否適合於台灣上市、櫃公司的違約預測。而最適違約點的預測在文獻上非常少,因此,本研究提出以基因演算法(Genetic Algorithms;簡稱GA.)為基礎的KMV模型求解最適違約點。在實證上,我們比較了GA-KMV及KMV模型,結果顯示,前者無論在樣本內或樣本外、全產業、電子業或非電子業,其績效均優於KMV模型。我們進一步使用ROC曲線比較,結果還是GA-KMV優於KMV模型,這結果說明了GA-KMV有較高的適合度,此違約點適合應用台灣地區的上市、櫃公司,有助於我們預測違約機率和銀行授信風險管理的建構。
    The purpose of this article is to investigate the optimal default point of Moody’s KMV model. We will test whether the default point is suitable for Taiwan’s list and OTC Companies or not and propose a new method based on genetic algorithms to be able to solve the optimal default point of KMV model. In empirical study, we have compared the GA-KMV with the KMV model. Results demonstrated that the percentage of correct either in-sample or out-sample, full industries, electronic industries or non-electronic industries, the GA-KMV model seems to be better than the KMV model. In order to find these results, we further to use the ROC curve to test these two models. Similar results show that the GA-KMV model can outperforms the KMV model which means that the GA-KMV model is a best-fit. In consequence, we obtained the optimal default point of Taiwan’s list and OTC companies. This will help us predict the optimal default point and improve the performance of risk management of banks.
    Appears in Collections:[財務金融學系暨研究所] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML228View/Open

    All items in 機構典藏 are protected by copyright, with all rights reserved.


    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - Feedback