English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 49378/84106 (59%)
造訪人次 : 7360034      線上人數 : 55
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/51545


    題名: 應用基因演算法於KMV模型違約點定義之檢討
    其他題名: Applying genetic algorithms in the definition of KMV model’s default point
    作者: 洪世庠;Hung, Shih-hsiang
    貢獻者: 淡江大學財務金融學系碩士班
    李沃牆;Lee, Wo-chiang
    關鍵詞: KMV模型;基因演算法;違約間距;違約機率;違約點;KMV;Genetic Algorithms;Distance to Default;Default Point
    日期: 2010
    上傳時間: 2010-09-23 15:25:02 (UTC+8)
    摘要: 本研究之目的在於針對KMV模型對於違約點之設定,並檢定此違約點是否適合於台灣上市、櫃公司的違約預測。而最適違約點的預測在文獻上非常少,因此,本研究提出以基因演算法(Genetic Algorithms;簡稱GA.)為基礎的KMV模型求解最適違約點。在實證上,我們比較了GA-KMV及KMV模型,結果顯示,前者無論在樣本內或樣本外、全產業、電子業或非電子業,其績效均優於KMV模型。我們進一步使用ROC曲線比較,結果還是GA-KMV優於KMV模型,這結果說明了GA-KMV有較高的適合度,此違約點適合應用台灣地區的上市、櫃公司,有助於我們預測違約機率和銀行授信風險管理的建構。
    The purpose of this article is to investigate the optimal default point of Moody’s KMV model. We will test whether the default point is suitable for Taiwan’s list and OTC Companies or not and propose a new method based on genetic algorithms to be able to solve the optimal default point of KMV model. In empirical study, we have compared the GA-KMV with the KMV model. Results demonstrated that the percentage of correct either in-sample or out-sample, full industries, electronic industries or non-electronic industries, the GA-KMV model seems to be better than the KMV model. In order to find these results, we further to use the ROC curve to test these two models. Similar results show that the GA-KMV model can outperforms the KMV model which means that the GA-KMV model is a best-fit. In consequence, we obtained the optimal default point of Taiwan’s list and OTC companies. This will help us predict the optimal default point and improve the performance of risk management of banks.
    顯示於類別:[財務金融學系暨研究所] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML224檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋