This paper is intended to investigate interaction response of a train running over a suspension bridge undergoing support settlements. The suspension bridge is modeled as a single-span suspended beam with hinged ends and the train as successive moving oscillators with identical properties. To conduct this dynamic problem with non-homogeneous boundary conditions, this study first divides the total response of the suspended beam into two parts: the static and dynamic responses. Then, the coupled equations of motion for the suspended beam carrying multiple moving oscillators are transformed into a set of nonlinearly coupled generalized equations by Galerkin's method, and solved using the Newmark method with an incremental-iterative procedure including the three phases: predictor, corrector, and equilibrium-checking. Numerical investigations demonstrate/bridge coupling system and that the differential movements of bridge supports will significantly affect the dynamic response of the running vehicles but insignificant influence on the bridge response.
Relation:
Interaction and multiscale mechanics: an international journal 2(3), pp.263-276