English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 56552/90363 (63%)
造访人次 : 11822324      在线人数 : 128
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/50584


    题名: Auto-configuring radial basis function networks for chaotic time series and flood forecasting
    作者: 張麗秋;Chang, Li-chiu;Chang, Fi-John;Wang, Yuan-peng
    贡献者: 淡江大學水資源與環境工程學系
    关键词: radial basis function network;genetic algorithm;Mackey-Glass time series;flood forecast
    日期: 2009-08
    上传时间: 2010-08-09 20:40:59 (UTC+8)
    出版者: Bognor Regis: John Wiley & Sons Ltd.
    摘要: The learning strategy of the radial basis function network (RBFN) commonly uses a hybrid learning process to identify the structure and then proceed to search the model parameters, which is a time-consuming procedure. We proposed an evolutionary way to automatically configure the structure of RBFN and search the optimal parameters of the network. The strategy can effectively identify an appropriate structure of the network by the orthogonal least squares algorithm and then systematically search the optimal locations of centres and the widths of their corresponding kernel function by the genetic algorithm. The proposed strategy of auto-configuring RBFN is first testified in predicting the future values of the chaotic Mackey-Glass time series. The results demonstrate the superiority, on both effectiveness and efficiency, of the proposed strategy in predicting the chaotic time series. We then further investigate the model's suitability and reliability in flood forecast. The Lan-Young River in north-east Taiwan is used as a case study, where the hourly river flow of 23 flood events caused by typhoons or storms is used to train and validate the neural networks. The back propagation neural network (BPNN) is also performed for the purpose of comparison. The results demonstrate that the proposed RBFN has much better performance than the BPNN. The RBFN not only provides an efficient way to model the rainfall-runoff process but also gives reliable and precise one-hour and two-hour ahead flood forecasts.
    關聯: Hydrological Processes 23(17), pp.2450-2459
    DOI: 10.1002/hyp.7352
    显示于类别:[水資源及環境工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    Chang_et_al-2009-Hydrological_Processes.pdf485KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈