淡江大學機構典藏:Item 987654321/50569
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64178/96951 (66%)
造访人次 : 10038722      在线人数 : 20448
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/50569


    题名: Fewer hyper-ellipsoids fuzzy rules generation using evolutional learning scheme
    作者: Feng, Hsuan-ming;翁慶昌;Wong, Ching-chang
    贡献者: 淡江大學電機工程學系
    关键词: Algorithms;Design;Experimentation;Measurement;Performance;Theory
    日期: 2008-01
    上传时间: 2010-08-09 19:53:09 (UTC+8)
    出版者: Philadelphia: Taylor & Francis Inc.
    摘要: Fuzzy rules generation is known an important task in designing fuzzy systems. This article applies an evolutionary fuzzy rules learning scheme to approach desired fuzzy systems having a lower fuzzy rules. The proposed learning scheme overcomes limitations of conventional fuzzy rules generation and completes the complex searching problems to extract the desired fuzzy system. In this article, aggregations of hyper-ellipsoids fuzzy partitions with different sizes and different positions are suggested to approximate the knowledge rule base of fuzzy systems whose membership functions are arbitrarily shaped and flexibly tuned in parameters searching space. Several corresponding parameters in defining the region of such hyper-ellipsoids type membership functions are efficiently selected based on the simple rule extracting technology. Furthermore, the constructed fuzzy system with only two fuzzy rules can be automatically extracted by the evolutional genetic algorithms (GAs) learning scheme with the guide of special fitness function. Finally, both inverted pendulum balance and nonlinear modeling problems are used to illustrate the effectiveness of the proposed method.
    關聯: Cybernetics and Systems 39(1), pp.19-44
    DOI: 10.1080/01969720701710022
    显示于类别:[電機工程學系暨研究所] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    0196-9722_39(1)p19-44.pdf1256KbAdobe PDF387检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈