English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 51511/86795 (59%)
造訪人次 : 8280057      線上人數 : 130
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/50569


    題名: Fewer hyper-ellipsoids fuzzy rules generation using evolutional learning scheme
    作者: Feng, Hsuan-ming;翁慶昌;Wong, Ching-chang
    貢獻者: 淡江大學電機工程學系
    關鍵詞: Algorithms;Design;Experimentation;Measurement;Performance;Theory
    日期: 2008-01
    上傳時間: 2010-08-09 19:53:09 (UTC+8)
    出版者: Philadelphia: Taylor & Francis Inc.
    摘要: Fuzzy rules generation is known an important task in designing fuzzy systems. This article applies an evolutionary fuzzy rules learning scheme to approach desired fuzzy systems having a lower fuzzy rules. The proposed learning scheme overcomes limitations of conventional fuzzy rules generation and completes the complex searching problems to extract the desired fuzzy system. In this article, aggregations of hyper-ellipsoids fuzzy partitions with different sizes and different positions are suggested to approximate the knowledge rule base of fuzzy systems whose membership functions are arbitrarily shaped and flexibly tuned in parameters searching space. Several corresponding parameters in defining the region of such hyper-ellipsoids type membership functions are efficiently selected based on the simple rule extracting technology. Furthermore, the constructed fuzzy system with only two fuzzy rules can be automatically extracted by the evolutional genetic algorithms (GAs) learning scheme with the guide of special fitness function. Finally, both inverted pendulum balance and nonlinear modeling problems are used to illustrate the effectiveness of the proposed method.
    關聯: Cybernetics and Systems 39(1), pp.19-44
    DOI: 10.1080/01969720701710022
    顯示於類別:[電機工程學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    0196-9722_39(1)p19-44.pdf1256KbAdobe PDF229檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋