English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 58323/91877 (63%)
造訪人次 : 14310815      線上人數 : 106
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/50444


    題名: A nonparametric smoothing method for assessing GEE models with longitudinal binary data
    作者: Lin, Kuo-Chin;陳怡如;Chen, Yi-ju;Shyr, Yu
    貢獻者: 淡江大學統計學系
    關鍵詞: GEE model;goodness-of-fit test;logistic regression model;longitudinal binary data;nonparametric smoothing
    日期: 2008-09
    上傳時間: 2010-08-09 17:28:21 (UTC+8)
    出版者: West Sussex: John Wiley & Sons Ltd.
    摘要: Studies involving longitudinal binary responses are widely applied in the health and biomedical sciences research and frequently analyzed by generalized estimating equations (GEE) method. This article proposes an alternative goodness-of-fit test based on the nonparametric smoothing approach for assessing the adequacy of GEE fitted models, which can be regarded as an extension of the goodness-of-fit test of le Cessie and van Houwelingen (Biometrics 1991; 47:1267-1282). The expectation and approximate variance of the proposed test statistic are derived. The asymptotic distribution of the proposed test statistic in terms of a scaled chi-squared distribution and the power performance of the proposed test are discussed by simulation studies. The testing procedure is demonstrated by two real data.
    關聯: Statistics in Medicine 27(22), pp.4428-4439
    DOI: 10.1002/sim.3315
    顯示於類別:[統計學系暨研究所] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    A nonparametric smoothing method for assessing GEE models with longitudinal binary data.pdf203KbAdobe PDF0檢視/開啟
    index.html0KbHTML58檢視/開啟

    在機構典藏中所有的資料項目都受到原著作權保護.

    TAIR相關文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回饋