English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58605/92268 (64%)
造访人次 : 552874      在线人数 : 112
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/50395

    题名: Mining stock category association and cluster on Taiwan stock market
    作者: 廖述賢;Liao, Shu-hsien;Ho, Hsu-hui;Lin, Hui-wen
    贡献者: 淡江大學經營決策學系
    关键词: Data mining;Association rule;Cluster analysis;Stock market analysis;Stock portfolio
    日期: 2008-07
    上传时间: 2010-08-09 16:44:14 (UTC+8)
    出版者: Oxford: Pergamon
    摘要: One of the most important problems in modern finance is finding efficient ways to summarize and visualize the stock market data to give individuals or institutions useful information about the market behavior for investment decisions. The enormous amount of valuable data generated by the stock market has attracted researchers to explore this problem domain using different methodologies. This paper investigates stock market investment issues on Taiwan stock market using a two-stage data mining approach. The first stage Apriori algorithm is a methodology of association rules, which is implemented to mine knowledge and illustrate knowledge patterns and rules in order to propose stock category association and possible stock category investment collections. Then the K-means algorithm is a methodology of cluster analysis implemented to explore the stock cluster in order to mine stock category clusters for investment information. By doing so, this paper proposes several possible Taiwan stock market portfolio alternatives under different circumstances.
    關聯: Expert Systems with Applications 35(1-2), pp.19-29
    DOI: 10.1016/j.eswa.2007.06.001
    显示于类别:[管理科學學系暨研究所] 期刊論文


    档案 大小格式浏览次数
    0957-4174_35(1-2)p19-29.pdf681KbAdobe PDF288检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈