English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 58323/91877 (63%)
造访人次 : 14305262      在线人数 : 144
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://tkuir.lib.tku.edu.tw:8080/dspace/handle/987654321/50391

    题名: Kernel Sliced Inverse Regression with Applications to Classification
    作者: Wu, Han-Ming
    贡献者: 淡江大學數學學系
    关键词: Dimension reduction;Kernel machines;Reproducing kernel Hilbert space;Visualization
    日期: 2008-09
    上传时间: 2010-08-09 16:42:41 (UTC+8)
    出版者: Philadelphia: Taylor & Francis Inc.
    摘要: Sliced inverse regression (SIR) was introduced by Li to find the effective dimension reduction directions for exploring the intrinsic structure of high-dimensional data. In this study, we propose a hybrid SIR method using a kernel machine which we call kernel SIR. The kernel mixtures result in the transformed data distribution being more Gaussian like and symmetric; providing more suitable conditions for performing SIR analysis. The proposed method can be regarded as a nonlinear extension of the SIR algorithm. We provide a theoretical description of the kernel SIR algorithm within the framework of reproducing kernel Hilbert space (RKHS). We also illustrate that kernel SIR performs better than several standard methods for discriminative, visualization, and regression purposes. We show how the features found with kernel SIR can be used for classification of microarray data and several other classification problems and compare the results with those obtained with several existing dimension reduction techniques. The results show that kernel SIR is a powerful nonlinear feature extractor for classification problems.
    關聯: Journal of Computational and Graphical Statistics 17(3), pp.590-610
    DOI: 10.1198/106186008X345161
    显示于类别:[數學學系暨研究所] 期刊論文


    档案 描述 大小格式浏览次数
    1061-8600_17(3)p590-610.pdf917KbAdobe PDF350检视/开启



    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈