資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/50385
|
題名: | Diversity of traveling wave solutions in FitzHugh–Nagumo type equations |
作者: | Hsu, Cheng-hsiung;楊定揮;Yang, Ting-hui;Yang, Chi-ru |
貢獻者: | 淡江大學數學學系 |
日期: | 2009-08 |
上傳時間: | 2010-08-09 16:41:02 (UTC+8) |
出版者: | Elsevier |
摘要: | In this work we consider the diversity of traveling wave solutions of the FitzHugh–Nagumo type equations ut=uxx+ƒ(u, w), Wt=εg(u, w), where f(u,w)=u(u−a(w))(1−u) for some smooth function a(w) and g(u,w)=u−w. When a(w) crosses zero and one, the corresponding profile equation possesses special turning points which result in very rich dynamics. In [W. Liu, E. Van Vleck, Turning points and traveling waves in FitzHugh–Nagumo type equations, J. Differential Equations 225 (2006) 381–410], Liu and Van Vleck examined traveling waves whose slow orbits lie only on two portions of the slow manifold, and obtained the existence results by using the geometric singular perturbation theory. Based on the ideas of their work, we study the co-existence of different traveling waves whose slow orbits could involve all portions of the slow manifold. There are more complicated and richer dynamics of traveling waves than those of [W. Liu, E. Van Vleck, Turning points and traveling waves in FitzHugh–Nagumo type equations, J. Differential Equations 225 (2006) 381–410]. We give a complete classification of all different fronts of traveling waves, and provide an example to support our theoretical analysis. |
關聯: | Journal of Differential Equations 247(4), pp.1185-1205 |
DOI: | 10.1016/j.jde.2009.03.023 |
顯示於類別: | [應用數學與數據科學學系] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
0022-0396_247(4)p1185-1205.pdf | | 792Kb | Adobe PDF | 342 | 檢視/開啟 | index.html | | 0Kb | HTML | 229 | 檢視/開啟 | YJDEQ 5897.pdf | | 334Kb | Adobe PDF | 191 | 檢視/開啟 |
|
在機構典藏中所有的資料項目都受到原著作權保護.
|