淡江大學機構典藏:Item 987654321/50375
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 62805/95882 (66%)
造访人次 : 3902390      在线人数 : 267
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/50375


    题名: DFT study of selective α-fluoride elimination of adsorbed CF3(ads) on both Ag(111) and Cu(111) surfaces
    作者: 林志興;Lin, Jyh-shing;Chou, Wen-chi
    贡献者: 淡江大學化學學系
    日期: 2008-01-01
    上传时间: 2010-08-09 16:25:02 (UTC+8)
    出版者: American Chemical Society (ACS)
    摘要: Total-energy calculations based on (1) density functional theory (DFT) in connection with ultrasoft pseudopotential (USP) and generalized gradient spin-polarized approximation (GGSA), (2) the partial structural constraint path minimization (PSCPM) method, and (3) an analysis tool of the partial density of states (PDOS) have been used to investigate the possible energetic profile for the selective activation of C−F bonds, that is, the single α-fluoride elimination of adsorbed CF3(ads) on both Cu(111) and Ag(111) surfaces leading to adsorbed CF2(ads) and F(ads) on both surfaces. Following our proposed most possible reaction pathway, namely, the diffusion of the hcp-hollow site of CF3(ads) toward the top site accompanied by the single α-fluoride elimination to form the fcc-hollow site of F(ads), our calculated energy barrier on the Ag(111) surface is significantly larger than (0.462 eV) that on the Cu(111) surface. We attribute this unusual high-energy barrier for the single α-fluoride elimination of adsorbed CF3(ads) to forming a productlike distorted transition-state structure on the Ag(111) surface, that is, the larger stretching of a C−F bond and the larger distortion of bond lengths of Ag−Ag on the Ag(111) surface, in comparison with a less energy barrier to forming a reactant-like distorted transition-state structure on the Cu(111) surface, that is, smaller stretching of a C−F bond and smaller distortion of bond lengths of Cu−Cu on the Cu(111) surface. Consequently, the single α-fluoride elimination of adsorbed CF3(ads) to form adsorbed CF2(ads) and F(ads) leading to the formation of CD2CF2(g), CD2CD2(g), and CF2CF2(g) through coupling reactions with CD2(ads) coadsorbed on the Ag(111) surface will be suppressed by the methylene (CD2) insertion into the Ag−CF3(ads) bond with CD2(ads) coadsorbed on the Ag(111) surface to initially form adsorbed Ag−CD2CF3(ads) and to continually form CD2CF2(g) through the β-fluoride elimination on the same surface. Finally, our calculated surface electronic states, that is, PDOS, of both Cu(111) and Ag(111) surfaces and our calculated bonding nature, that is, PDOS, of both carbon and fluorine within adsorbed CF3(ads) on the same surfaces at their different transition-state structures, that is, reactant-like on Cu(111) versus productlike on Ag(111), are investigated to obtain further insight into the effect of both surface electronic states and C−F bond strength on their different reactivity for the single α-fluoride elimination of adsorbed CF3(ads) on both surfaces.
    關聯: Journal of Physical Chemistry C 112(3), pp.768-773
    DOI: 10.1021/jp074502b
    显示于类别:[化學學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    1932-7447_112(3)p768-773.pdf190KbAdobe PDF285检视/开启
    DFT study of selective α-fluoride elimination of adsorbed CF3(ads) on both Ag(111) and Cu(111) surfaces.pdf189KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈