資料載入中.....
|
請使用永久網址來引用或連結此文件:
https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/50372
|
題名: | Structural and Optical Properties of Passivated Silicon Nanoclusters with Different Shapes: A Theoretical Investigation |
作者: | 王伯昌;Wang, Bo-cheng;Chou, Yu-ma;Deng, Jin-pei;Dung, Yu-tsai |
貢獻者: | 淡江大學化學學系 |
日期: | 2008-07-01 |
上傳時間: | 2010-08-09 16:23:50 (UTC+8) |
出版者: | American Chemical Society (ACS) |
摘要: | Optimized geometries and electronic structures of hydrogenated silicon nanoclusters, which include the Td and Ih symmetries, have been generated by using the semiempirical AM1 and PM3 methods, the density functional theory (DFT) B3LYP method with the 6−31G(d) and LANL2DZ basis sets from the Gaussian 03 package, and the local density functional approximation (LDA), which is implemented in the SIESTA package. The calculated diameters for these Td symmetric hydrogenated silicon nanoclusters are in the range from 6.61 Å (Si5H12) to 23.24 Å (Si281H172). For the Ih symmetry, we calculated Si20H20 and Si100H60 nanoclusters only. Theoretically, the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) is size dependent. The calculated energy gap decreases (Si5H12: 7.65 eV to Si281H172: 3.06 eV) while the diameter of silicon nanocluster increases. By comparing different calculated results, we concluded that the calculated energy gap by B3LYP/6−31G(d)//LDA/SIESTA is close to that from experiment and that the LDA/SIESTA result underestimates the experimental value. On the contrary, the AM1 and PM3 results overestimate the experimental results. For investigation of the optical properties of Si nanoclusters as a function of surface passivation, we carried out a B3LYP/6−31G(d)//LDA/SIESTA calculation of the Si35 and Si47 core clusters with full alkyl-, OH−, NH2−, CH2NH2−, OCH3−, SH−, C3H6SH−, and CN− passivations. The calculated optical properties of alkyl passivated Si35 nanoclusters (Si35(CH3)36, Si35(C2H5)36, and Si35(C3H7)36) are close to one another and are higher than those of oxide, nitride, and sulfide passivated Si35 clusters. In conclusion, the alkyl passivant affects weakly the calculated optical gaps, and the electron-withdrawing passivants generate a red-shift in the energy gap of silicon nanoclusters. A size-dependent effect is also observed for these passivated Si nanoclusters. |
關聯: | Journal of Physical Chemistry A 112(28), pp.6351-6357 |
DOI: | 10.1021/jp8006975 |
顯示於類別: | [化學學系暨研究所] 期刊論文
|
文件中的檔案:
檔案 |
描述 |
大小 | 格式 | 瀏覽次數 |
1089-5639_112(28)p6351-6357.pdf | | 1300Kb | Adobe PDF | 333 | 檢視/開啟 | index.html | PDF全文 | 0Kb | HTML | 206 | 檢視/開啟 | Structural and Optical Properties of Passivated Silicon Nanoclusters with Different Shapes A Theoretical Investigation.pdf | | 1298Kb | Adobe PDF | 1 | 檢視/開啟 |
|
在機構典藏中所有的資料項目都受到原著作權保護.
|