淡江大學機構典藏:Item 987654321/50351
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 64191/96979 (66%)
造访人次 : 8126291      在线人数 : 10958
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library & TKU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://tkuir.lib.tku.edu.tw/dspace/handle/987654321/50351


    题名: Prepotential approach to exact and quasi-exact solvabilities
    作者: 何俊麟;Ho, Choon-lin
    贡献者: 淡江大學物理學系
    关键词: Prepotential;Exact solvability;Quasi-exact solvability;Bethe ansatz equations
    日期: 2008-09
    上传时间: 2010-08-09 15:47:16 (UTC+8)
    出版者: Maryland Heights: Academic Press
    摘要: Exact and quasi-exact solvabilities of the one-dimensional Schrödinger equation are discussed from a unified viewpoint based on the prepotential together with Bethe ansatz equations. This is a constructive approach which gives the potential as well as the eigenfunctions and eigenvalues simultaneously. The novel feature of the present work is the realization that both exact and quasi-exact solvabilities can be solely classified by two integers, the degrees of two polynomials which determine the change of variable and the zeroth order prepotential. Most of the well-known exactly and quasi-exactly solvable models, and many new quasi-exactly solvable ones, can be generated by appropriately choosing the two polynomials. This approach can be easily extended to the constructions of exactly and quasi-exactly solvable Dirac, Pauli, and Fokker–Planck equations.
    關聯: Annals of Physics 323(9), pp.2241-2252
    DOI: 10.1016/j.aop.2008.04.010
    显示于类别:[物理學系暨研究所] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    0003-4916_323(9)p2241-2252.pdf237KbAdobe PDF344检视/开启
    index.html0KbHTML92检视/开启
    Prepotential approach to exact and quasi-exact solvabilities.pdf237KbAdobe PDF1检视/开启

    在機構典藏中所有的数据项都受到原著作权保护.

    TAIR相关文章

    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library & TKU Library IR teams. Copyright ©   - 回馈